This paper proposes an acoustic bubble and magnetic actuation-based microrobot for enhancing multiphase drug delivery efficiency. The proposed device can encapsulate multiphase drugs, including liquids, using the two bubbles embedded within the microtube. Additionally, using the magnetic actuation of the loaded magnetic liquid metal, it can deliver drugs to target cells.
View Article and Find Full Text PDFThis paper presents a miniature robot designed for monitoring its surroundings and exploring small and complex environments by skating on the surface of water. The robot is mainly made of extruded polystyrene insulation (XPS) and Teflon tubes and is propelled by acoustic bubble-induced microstreaming flows generated by gaseous bubbles trapped in the Teflon tubes. The robot's linear motion, velocity, and rotational motion are tested and measured at different frequencies and voltages.
View Article and Find Full Text PDFIn this paper, we report a volume expansion phenomenon of a liquid metal droplet naturally oxidized in an ambient environment by applying an acoustic wave. An oxidized gallium-based liquid metal droplet was placed on a paper towel, and a piezo-actuator was attached underneath it. When a liquid metal droplet was excited by acoustic wave, the volume of liquid metal was expanded due to the inflow of air throughout the oxide crack.
View Article and Find Full Text PDFMicromachines (Basel)
September 2021
A gallium-based liquid metal got high attention recently, due to the excellent material properties that are useful in various research areas. We report here on electric field-induced liquid metal droplet generation and falling direction manipulation. The well-analyzed electro-hydrodynamic method is a selectable way to control the liquid metal, as the liquid metal is conductive.
View Article and Find Full Text PDF