In this paper, a capacitively-fed, ultra-wideband (UWB), and low-profile monocone antenna is proposed for vehicle-to-everything (V2X) applications. The proposed antenna consists of a monocone design with an inner set of vias. Additionally, an outer ring is added with a small gap from the monocone and shorted with six folded wires of different lengths to extend the operating band.
View Article and Find Full Text PDFIn this study, a low-cost continuous wave (CW) radar system with 3D-printed high-gain horn antennas called VitRad is proposed for human vital sign detection. The CW radar consists of 3D-printed high-gain horn antennas, commercially available low-cost surface-mounting devices, and monolithic ICs. The CW radar system operates at a frequency band of 5.
View Article and Find Full Text PDFIn this paper, the far-field energy harvesting system for self-sustainable wireless autonomous sensor application is presented. The proposed autonomous sensor system consists of a wireless power supplier (active antenna) and far-field energy harvesting technology-enabled autonomous battery-less sensors. The wireless power supplier converts solar power to electromagnetic power in order to transfer power to multiple autonomous sensors wirelessly.
View Article and Find Full Text PDFThe detailed design considerations for the printed RFID-based sensor system is presented in this paper. Starting from material selection and metallization method, this paper discusses types of RFID-based sensors (single- & dual-tag sensor topologies), design procedures, and performance evaluation methods for the wireless sensor system. The electrical properties of the paper substrates (cellulose-based and synthetic papers) and the silver nano-particle-based conductive film are thoroughly characterized for RF applications up to 8 GHz.
View Article and Find Full Text PDF