Publications by authors named "Sangjun Kang"

Transmission electron microscopy (TEM) has emerged as a valuable tool for assessing and mapping strain fields within materials. By directly analyzing local atomic spacing variations, TEM enables the precise measurement of local strain with high spatial resolution. However, it is standard practice to use thin specimens in TEM analysis to ensure electron transparency and minimize issues such as projection artifacts and contributions from multiple scattering.

View Article and Find Full Text PDF

For decades, scanning/transmission electron microscopy (S/TEM) techniques have been employed to analyze shear bands in metallic glasses and understand their formation in order to improve the mechanical properties of metallic glasses. However, due to a lack of direct information in reciprocal space, conventional S/TEM cannot characterize the local strain and atomic structure of amorphous materials, which are key to describe the deformation of glasses. For this work, 4-dimensional-STEM (4D-STEM) is applied to map and directly correlate the local strain and the atomic structure at the nanometer scale in deformed metallic glasses.

View Article and Find Full Text PDF

The study aimed to examine how changing land use conditions are related to the occurrence of heat waves. The employed methods were (1) the Urban Expansion Intensity Index (UEII) and the Green Expansion Intensity (GEII) for 49 cities in the U.S.

View Article and Find Full Text PDF

Nanosized TiO2 thin film on the substrate such as stainless steel plate and slide glass film were prepared by magnetron sputtering method, and these TiO2 thin films were characterized by field emission-scanning electron microscopy (FE-SEM). Photocatalytic activity for Methyl-ethyl-ketone (MEK) and acetaldehyde were measured using a closed circulating reaction system through the various ultra violet (UV) sources. From the results of SEM images, nanosized TiO2 thin film was uniformly coated on slide glass, ranging from 360 nm to 370 nm.

View Article and Find Full Text PDF

Gold catalysts supported on Co3O4 were prepared by co-precipitation (CP), deposition-precipitation (DP), and impregnation (IMP) methods. The Au/Co3O4 catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and temperature programmed reduction (TPR) to understand the different activities for CO oxidation with different preparation methods. Gold particles below 5 nm supported on Co3O4 by DP method were found to be more exposed to the surface than those by CP and IMP methods, and this catalyst was highly active and stable in CO oxidation.

View Article and Find Full Text PDF

Bimetallic Pt-Au catalysts supported on ZnO/Al2O3 were prepared by incipient wetness impregnation (IW-IMP) method with different pretreatment conditions such as flow velocity, calcination temperature, and heating rate under H2 during the calcination procedure, and characterized by X-ray diffraction (XRD), CO chemisorption, and scanning transmission electron microscopy (STEM) equipped energy dispersive spectroscopy (EDS). Furthermore, catalytic activity for complete oxidation of toluene was measured using a flow reactor under atmospheric pressure. Finally, relationship between the particle sizes with pretreatment conditions and catalytic activity for toluene on the bimetallic Pt-Au catalysts was discussed.

View Article and Find Full Text PDF