The study of the interactions between biofunctionalized gold nanoclusters (Au NCs) and spermatozoa is highly relevant to evaluate the potential of Au NCs as imaging probes and transfection agents in reproductive biology. In this work, confocal laser scanning microscopy (CLSM) was used to investigate the distribution of Au NCs bioconjugated with peptide (nuclear localisation sequence, NLS) and oligonucleotide (locked nucleic acid, LNA) ligands in bovine spermatozoa. Fluorescence lifetime imaging (FLIM) was employed to detect changes in the NC's chemical environment.
View Article and Find Full Text PDFThe interface of nanobio science and cancer nanomedicine is one of the most important current frontiers in research, being full of opportunities and challenges. Ultrasmall fluorescent metal nanoclusters (MNCs) and carbon quantum dots (CQDs) have emerged as promising fluorescent nanomaterials due to their unique physicochemical and optical properties, facile surface functionalization, good photostability, biocompatibility, and aqueous dispersity. These characteristics make them advantageous over conventional fluorophores such as organic dye molecules and semiconductor quantum dots (QDs) for the detection, diagnosis, and treatment of various diseases including cancer.
View Article and Find Full Text PDFModulating the structures and properties of biomembranes via permeation of small amphiphilic molecules is immensely important, having diverse applications in cell biology, biotechnology, and pharmaceuticals, because their physiochemical and biological interactions lead to new pathways for transdermal drug delivery and administration. In this work, we have elucidated the role of dimethyl sulfoxide (DMSO), broadly used as a penetration-enhancing agent and cryoprotective agent on model lipid membranes, using a combination of fluorescence microscopy and time-resolved fluorescence spectroscopy. Spatially resolved fluorescence lifetime imaging microscopy (FLIM) has been employed to unravel how the fluidity of the DMSO-induced bilayer regulates the structural alteration of the vesicles.
View Article and Find Full Text PDFGold nanoclusters (Au NCs) are an emerging class of fluorescent nanomaterials due to their fascinating chemical or physical properties and atomically precise structures; hence, they have been widely used in the field of biosensing and bioimaging. In this article, we demonstrate the green synthesis of orange, yellow, green, and cyan emitting Au NCs by core etching and ligand exchange methodology. Our investigation reveals that the chain length of the mercaptan acids, which are present on the surface of the Au NCs, controls the optical and electronic properties of the synthesized NCs.
View Article and Find Full Text PDFIn view of many promising applications of gold nanoclusters (AuNCs), nanothermometry is an important field of research in biology and medicine. Here, we demonstrate the temperature dependent photophysical properties of highly luminescent green emitting 6-aza-2-thiothymine/l-arginine-stabilized Au nanosclusters (ATT/Arg Au NCs) by using steady state and time-resolved photoluminescence spectroscopy. Significantly, thermoresponsive properties of these highly photostable and biocompatible Au NCs are reversible, which endow the probe for further bioanalytical applications with great prospects.
View Article and Find Full Text PDFIn the last two decades, researchers have extensively studied highly stable and ordered supramolecular assembly formation using oppositely charged surfactants. Thereafter, surface-active ionic liquids (SAILs), a special class of room temperature ionic liquids (RTILs), replace the surfactants to form various supramolecular aggregates. Therefore, in the last decade, the building blocks of the supramolecular aggregates (micelle, mixed micelle, and vesicular assemblies) have changed from oppositely charged surfactant/surfactant pair to surfactant/SAIL and SAIL/SAIL pair.
View Article and Find Full Text PDFIn this article, we have unveiled the aggregation behavior of a potent chemotherapeutic drug, doxorubicin hydrochloride (Dox) in a well-known imidazolium based surface active ionic liquid (SAIL), 1-octyl-3-methylimidazolium chloride (CmimCl). The aggregates formed by Dox in CmimCl have been characterized using dynamic light scattering (DLS), fluorescence lifetime imaging microscopy (FLIM), high-resolution transmission electron microscopy (HR-TEM), analytical transmission electron microscopy (analytical TEM), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and Fourier-transform infrared spectroscopy (FTIR) measurements. It is found that Dox forms large spherical aggregates in the presence of CmimCl SAIL.
View Article and Find Full Text PDFIn this article, anionic lipophilic dye merocyanine 540(MC540) and cationic surface-active ionic liquid (SAIL) 1-octyl-3-methylimidazolium chloride (CmimCl) are employed to construct highly ordered fibrillar and vesicular aggregates exploiting an ionic self-assembly (ISA) strategy. It is noteworthy that the concentration of the counterions has exquisite control over the morphology, in which lowering the concentration of both the building blocks in a stoichiometric ratio of 1:1 provides a vesicle to fibril transition. Here, we have reported the concentration-controlled fibril-vesicle transition utilizing the emerging fluorescence lifetime imaging microscopy (FLIM) technique.
View Article and Find Full Text PDFOne of the key necessary steps to prevent human neurological disorders is the efficient disruption of protein aggregation or amyloid fibril. In this article, we have explored the effect of three amphiphilic surface active ionic liquids (SAILs), namely 1-methyl-3-octylimidazolium chloride ([Cmim]Cl), 1-dodecyl-3-methyllimidazolium chloride ([Cmim]Cl), and 1-hexadecyl-3-methyllimidazolium chloride ([Cmim]Cl) having concentrations of 5.8, 0.
View Article and Find Full Text PDFThis study has been actually performed with the aim to develop vitamin E derived vesicles individually from a surface active ionic liquid (1-Hexadecyl-3-Methylimidazolium chloride ([Cmim]Cl)) and a common cationic amphiphile (benzyldimethylhexadecylammonium chloride (BHDC)) and also to investigate their consequent breakdown in presence of bile salt molecule. From this study, it is revealed that the rotational motion of coumarin 153 (C153) molecule is hindered as the vitamin E content is increased in the individual micellar solution of [Cmim]Cl and BHDC. The extent of enhancement in rotational relaxation time is more pronounced in case of [Cmim]Cl-vitamin E solutions than in the BHDC-vitamin E vesicular aggregates which confirms the greater rigidity of the former vesicular system than the later one.
View Article and Find Full Text PDFPhenylketonuria and tyrosinemia type II, the two metabolic disorders, are originated due to the complications in metabolism of phenylalanine (Phe) and tyrosine (Tyr), respectively. Several neurological injuries, involving microcephaly, mental retardation, epilepsy, motor disease, and skin problems etc., are the symptoms of these two diseases.
View Article and Find Full Text PDFThe presence of different surfactants can alter the physicochemical behaviors of aqueous organized assemblies. In this article, we have investigated the location of hydrophobic molecule (Coumarin 153, C153) and hydrophilic molecule (Rhodamine 6G perchlorate, R6G) during micelle-vesicle-micelle transition in aqueous medium in presence of anionic surfactant, sodium dodecylbenzenesulfonate (SDBS) and cationic imidazolium-based surfactant, 1-alkyl-3-methylimidazolium chloride (CmimCl; n=12, 16). Initially, the physicochemical properties of anionic micellar solution of SDBS has been investigated in presence of imidazolium-based surfactant, CmimCl (n=12, 16) in aqueous medium by visual observation, turbidity measurement, zeta potential (ζ), dynamics light scattering (DLS), and transmission electron microscopy (TEM).
View Article and Find Full Text PDFThe development of stable vesicular assemblies and the understanding of their interaction and dynamics in aqueous solution are long-standing topics in the research of chemistry and biology. Fatty acids are known to form vesicle structure in aqueous solution depending on the pH of the medium. Protic ionic liquid of fatty acid with ethyl amine (oleate ethyl amine, OEA) as a component spontaneously forms a vesicle in aqueous solution.
View Article and Find Full Text PDFFatty acids are known to form different supramolecular aggregates in aqueous solutions depending on the pH of the medium. The dynamics of the transformation of oleate micelles into oleic acid/oleate vesicles has been investigated using a pH-sensitive intramolecular proton transfer fluorophore, 2,2'-bipyridine-3,3'-diol [BP(OH)]. Different prototropic forms of BP(OH) exist in different pH values of the system, and thus, the ground state and the excited state dynamics of BP(OH) have been modulated in these confined media.
View Article and Find Full Text PDFThis article demonstrates the interaction of a deoxyribonucleic acid (DNA) nucleotide, adenosine-5'-monophosphate disodium (AMP) with a cationic surface active ionic liquid (SAIL) 1-dodecyl-3-methylimidazoium chloride (CmimCl), and an anionic SAIL, 1-butyl-3-methylimidazolium n-octylsulfate ([Cmim][CSO]). Dynamic light scattering (DLS) measurements and H NMR (nuclear magnetic resonance) studies indicate that substantial interaction is taking place among the DNA nucleotide (AMP) and the SAILs. Moreover, cryogenic transmission electron microscopy (cryo-TEM) suggests that SAILs containing micellar assemblies are transformed into larger micellar assemblies in the presence of DNA nucleotides.
View Article and Find Full Text PDFIn this article, our aim is to investigate the interaction of l-phenylalanine (l-Phe) fibrils with crown ethers (CEs). For this purpose, two different CEs (15-Crown-5 (15C5) and 18-Crown-6 (18C6)) were used. Interestingly, we have observed that both CEs have the ability to arrest fibril formation.
View Article and Find Full Text PDFThis article describes the formation of stable unilamellar vesicles involving surface active ionic liquid (SAIL), 1-hexadecyl-3-methylimidazolium chloride (C16mimCl), and 5-methyl salicylic acid (5mS). Turbidity, dynamic light scattering (DLS), transmission electron microscopy (TEM), and viscosity measurements suggest that C16mimCl containing micellar aggregates are transformed to elongated micelle and finally into vesicular aggregates with the addition of 5mS. Besides, we have also investigated the photophysical aspects of a hydrophobic (coumarin 153, C153) and a hydrophilic molecule (rhodamine 6G (R6G) perchlorate) during 5mS-induced micelle to vesicle transition.
View Article and Find Full Text PDFBackground: The study of the interaction of a drug with plasma protein is very important because drug-protein binding plays an important role in determination of pharmacological and toxicological properties of drugs. Our study was designed to investigate the interaction between aceclofenac and bovine serum albumin (BSA) using fluorescence spectroscopy at different temperatures (298 and 308 K).
Methods: Fluorescence spectroscopy was used to carry out the study.
A combined experimental and quantum chemical study of Group 7 borane, trimetallic triply bridged borylene and boride complexes has been undertaken. Treatment of [{Cp*CoCl}2 ] (Cp*=1,2,3,4,5-pentamethylcyclopentadienyl) with LiBH4 ⋅thf at -78 °C, followed by room-temperature reaction with three equivalents of [Mn2 (CO)10 ] yielded a manganese hexahydridodiborate compound [{(OC)4 Mn}(η(6) -B2 H6 ){Mn(CO)3 }2 (μ-H)] (1) and a triply bridged borylene complex [(μ3 -BH)(Cp*Co)2 (μ-CO)(μ-H)2 MnH(CO)3 ] (2). In a similar fashion, [Re2 (CO)10 ] generated [(μ3 -BH)(Cp*Co)2 (μ-CO)(μ-H)2 ReH(CO)3 ] (3) and [(μ3 -BH)(Cp*Co)2 (μ-CO)2 (μ-H)Co(CO)3 ] (4) in modest yields.
View Article and Find Full Text PDF