Publications by authors named "Sanghyun Oh"

Article Synopsis
  • α-synucleinopathies, like Parkinson's disease, involve the misfolding and clumping of α-synuclein proteins, which can be difficult to detect in common samples like blood due to inhibitors.
  • * Recent advancements in a technique called Nanoparticle-enhanced Quaking-induced Conversion (Nano-QuIC) have shown that it can speed up detection of misfolded α-synuclein and improve sensitivity by 100 times compared to traditional methods.
  • * Nano-QuIC has demonstrated effectiveness in identifying low concentrations of misfolded proteins in blood samples from Parkinson's patients, paving the way for noninvasive blood tests that could lead to earlier diagnosis and better disease management.
View Article and Find Full Text PDF

Surface-enhanced infrared absorption spectroscopy (SEIRA) has emerged as a powerful technique for ultrasensitive chemical-specific analysis. SEIRA can be realized by employing metasurfaces that can enhance light-matter interactions in the spectral bands of molecular vibrations. Increasing sample complexity emphasizes the need for metasurfaces that can operate simultaneously at different spectral bands, both accessing rich spectral information over a broad band, and resolving subtle differences in the absorption fingerprints through narrow-band resonances.

View Article and Find Full Text PDF

We hereby propose and theoretically investigate a new scheme for simultaneous generation and manipulation of terahertz (THz) waves through difference frequency generation facilitated by a metasurface-assisted nonlinear leaky waveguide antenna. The proposed structure integrates a nonlinear optical waveguide, composed of multiple AlGaAs layers, with a THz leaky waveguide, wherein a bianisotropic metasurface realizes the radiating aperture. By explicitly utilizing the electric, magnetic, and magnetoelectric coupling responses of the metasurface, we demonstrate that the generated THz wave can be induced as a tightly confined, phase-matched guided mode for efficient generation of the THz wave.

View Article and Find Full Text PDF

Anisotropic planar polaritons - hybrid electromagnetic modes mediated by phonons, plasmons, or excitons - in biaxial two-dimensional (2D) van der Waals crystals have attracted significant attention due to their fundamental physics and potential nanophotonic applications. In this Perspective, we review the properties of planar hyperbolic polaritons and the variety of methods that can be used to experimentally tune them. We argue that such natural, planar hyperbolic media should be fairly common in biaxial and uniaxial 2D and 1D van der Waals crystals, and identify the untapped opportunities they could enable for functional (i.

View Article and Find Full Text PDF

Transition metal dichalcogenide (TMD) layered semiconductors possess immense potential in the design of photonic, electronic, optoelectronic, and sensor devices. However, the sub-bandgap light absorption of TMD in the range from near-infrared (NIR) to short-wavelength infrared (SWIR) is insufficient for applications beyond the bandgap limit. Herein, we report that the sub-bandgap photoresponse of MoS/Au heterostructures can be robustly modulated by the electrode fabrication method employed.

View Article and Find Full Text PDF

Background: A motor unit (MU) is formed by a single alpha motor neuron (MN) and the muscle fibers it innervates. The MU is essential for all voluntary movements. Functional deficits in the MU result in neuromuscular disorders (NMDs).

View Article and Find Full Text PDF

Misfolded proteins associated with various neurodegenerative diseases often accumulate in tissues or circulate in biological fluids years before the clinical onset, thus representing ideal diagnostic targets. Real-time quaking-induced conversion (RT-QuIC), a protein-based seeded-amplification assay, holds great potential for early disease detection, yet challenges remain for routine diagnostic application. Chronic Wasting Disease (CWD), associated with misfolded prion proteins of cervids, serves as an ideal model for evaluating new RT-QuIC methodologies.

View Article and Find Full Text PDF

Aims: Diabetes is a well-established risk factor for cardiovascular disease (CVD), but little is known about the differences in contribution of diabetes to incident CVD between adult cancer survivors and those without history of cancer. The aim of this study was to evaluate the magnitude of association between diabetes and CVD risk among adult cancer survivors and their general population counterparts.

Methods And Results: The National Health Insurance Service database was used to abstract data on 5199 adult cancer survivors and their general population controls in a 1:1 age- and sex-matched cohort setting.

View Article and Find Full Text PDF

Nearly all biosensing platforms can be described using two fundamental steps-collection and detection. Target analytes must be delivered to a sensing element, which can then relay the transduced signal. For point-of-care technologies, where operation is to be kept simple, typically the collection step is passive diffusion driven-which can be slow or limiting under low concentrations.

View Article and Find Full Text PDF

Subwavelength terahertz (THz) imaging methods are highly desirable for biochemical sensing as well as materials sciences, yet sensitive spectral fingerprinting is still challenging in the frequency domain due to weak light-matter interactions. Here, we demonstrate subwavelength THz resonance imaging (STRING) that overcomes this limitation to achieve ultrasensitive molecular fingerprinting. STRING combines individual ring-shaped coaxial single resonators with near-field spectroscopy, yielding considerable sensitivity gains from both local field enhancement and the near-field effect.

View Article and Find Full Text PDF

Detection of terahertz (THz) radiation has many potential applications, but presently available detectors are limited in many aspects of their performance, including sensitivity, speed, bandwidth and operating temperature. Most do not allow the characterization of THz polarization states. Recent observation of THz-driven luminescence in quantum dots offers a possible detection mechanism via field-driven interdot charge transfer.

View Article and Find Full Text PDF

Infrared spectroscopy provides unique information on the composition and dynamics of biochemical systems by resolving the characteristic absorption fingerprints of their constituent molecules. Based on this inherent chemical specificity and the capability for label-free, noninvasive, and real-time detection, infrared spectroscopy approaches have unlocked a plethora of breakthrough applications for fields ranging from environmental monitoring and defense to chemical analysis and medical diagnostics. Nanophotonics has played a crucial role for pushing the sensitivity limits of traditional far-field spectroscopy by using resonant nanostructures to focus the incident light into nanoscale hot-spots of the electromagnetic field, greatly enhancing light-matter interaction.

View Article and Find Full Text PDF

The ability to control the light polarization state is critically important for diverse applications in information processing, telecommunications, and spectroscopy. Here, we propose that a stack of anisotropic van der Waals materials can facilitate the building of optical elements with Jones matrices of unitary, Hermitian, non-normal, singular, degenerate, and defective classes. We show that the twisted stack with electrostatic control can function as arbitrary-birefringent wave-plate or arbitrary polarizer with tunable degree of non-normality, which in turn give access to plethora of polarization transformers including rotators, pseudorotators, symmetric and ambidextrous polarizers.

View Article and Find Full Text PDF

Open-channel microfluidics enables precise positioning and confinement of liquid volume to interface with tightly integrated optics, sensors, and circuit elements. Active actuation via electric fields can offer a reduced footprint compared to passive microfluidic ensembles and removes the burden of intricate mechanical assembly of enclosed systems. Typical systems actuate via manipulating surface wettability (i.

View Article and Find Full Text PDF

Cellular retinoic acid-binding protein 1 (CRABP1) binds retinoic acid (RA) specifically in the cytoplasm with unclear functions. CRABP1 is highly and specifically expressed in spinal motor neurons (MNs). Clinical and pre-clinical data reveal a potential link between CRABP1 and MN diseases, including the amyotrophic lateral sclerosis (ALS).

View Article and Find Full Text PDF

Nanophotonic devices, which control light in subwavelength volumes and enhance light-matter interactions, have opened up exciting prospects for biosensing. Numerous nanophotonic biosensors have emerged to address the limitations of the current bioanalytical methods in terms of sensitivity, throughput, ease-of-use and miniaturization. In this Review, we provide an overview of the recent developments of label-free nanophotonic biosensors using evanescent-field-based sensing with plasmon resonances in metals and Mie resonances in dielectrics.

View Article and Find Full Text PDF

The front cover artwork is provided by Prof. Sang-Hyun Oh's group at the University of Minnesota. The image shows the optical trapping of chiral nanoparticles using coaxial nano-optical tweezers, devices capable of harnessing light to manipulate objects a few nanometers in size.

View Article and Find Full Text PDF

Low-dimensional van der Waals (vdW) materials can harness tightly confined polaritonic waves to deliver unique advantages for nanophotonic biosensing. The reduced dimensionality of vdW materials, as in the case of two-dimensional graphene, can greatly enhance plasmonic field confinement, boosting sensitivity and efficiency compared to conventional nanophotonic devices that rely on surface plasmon resonance in metallic films. Furthermore, the reduction of dielectric screening in vdW materials enables electrostatic tunability of different polariton modes, including plasmons, excitons, and phonons.

View Article and Find Full Text PDF

Graphene is now a crucial component of many device designs in electronics and optics. Just like the noble metals, this single layer of carbon atoms in a honeycomb lattice can support surface plasmons, which are central to several sensing technologies in the mid-infrared regime. As with classical metal plasmons, periodic corrugations in the graphene sheet itself can be used to launch these surface waves; however, as graphene plasmons are tightly confined, the role of unwanted surface roughness, even at a nanometer scale, cannot be ignored.

View Article and Find Full Text PDF

Optical tweezers were developed in 1970 by Arthur Ashkin as a tool for the manipulation of micron-sized particles. Ashkin's original design was then adapted for a variety of purposes, such as trapping and manipulation of biological materials and the laser cooling of atoms. More recent development has led to nano-optical tweezers, for trapping particles on the scale of only a few nanometers, and holographic tweezers, which allow for dynamic control of multiple traps in real-time.

View Article and Find Full Text PDF

On-chip integration of plasmonics and electronics can benefit a broad range of applications in biosensing, signal processing, and optoelectronics. A key requirement is a chip-scale manufacturing method. Here, we demonstrate a split-trench resonator platform that combines a high-quality-factor resonant plasmonic biosensor with radio frequency (RF) nanogap tweezers.

View Article and Find Full Text PDF

Two-dimensional (2D) materials are promising candidates for building ultrashort-channel devices because their thickness can be reduced down to a single atomic layer. Here, we demonstrate an ultraflat nanogap platform based on atomic layer deposition (ALD) and utilize the structure to fabricate 2D material-based optical and electronic devices. In our method, ultraflat metal surfaces, template-stripped from a Si wafer mold, are separated by an AlO ALD layer down to a gap width of 10 nm.

View Article and Find Full Text PDF

An acoustic plasmon mode in a graphene-dielectric-metal structure has recently been spotlighted as a superior platform for strong light-matter interaction. It originates from the coupling of graphene plasmon with its mirror image and exhibits the largest field confinement in the limit of a sub-nm-thick dielectric. Although recently detected in the far-field regime, optical near-fields of this mode are yet to be observed and characterized.

View Article and Find Full Text PDF

Although van der Waals-layered transition metal dichalcogenides from transient absorption spectroscopy have successfully demonstrated an ideal carrier multiplication (CM) performance with an onset of nearly 2E, interpretation of the CM effect from the optical approach remains unresolved owing to the complexity of many-body electron-hole pairs. We demonstrate the escalated photocurrent with excitation photon energy by fabricating the dual-gate p-n junction of a MoTe film on a transparent substrate. Electrons and holes were efficiently extracted by eliminating the Schottky barriers in the metal contact and minimizing multiple reflections.

View Article and Find Full Text PDF