Publications by authors named "Sanghyun Choo"

In brain-computer interface (BCI), building accurate electroencephalogram (EEG) classifiers for specific mental tasks is critical for BCI performance. The classifiers are developed by machine learning (ML) and deep learning (DL) techniques, requiring a large dataset for training to build reliable and accurate models. However, collecting large enough EEG datasets is difficult due to intra-/inter-subject variabilities and experimental costs.

View Article and Find Full Text PDF

Recently, convolutional neural network (CNN)-based classification models have shown good performance for motor imagery (MI) brain-computer interfaces (BCI) using electroencephalogram (EEG) in end-to-end learning. Although a few explainable artificial intelligence (XAI) techniques have been developed, it is still challenging to interpret the CNN models for EEG-based BCI classification effectively. In this research, we propose 3D-EEGNet as a 3D CNN model to improve both the explainability and performance of MI EEG classification.

View Article and Find Full Text PDF

Situated models of emotion hypothesize that emotions are optimized for the context at hand, but most neuroimaging approaches ignore context. For the first time, we applied Granger causality (GC) analysis to determine how an emotion is affected by a person's cultural background and situation. Electroencephalographic recordings were obtained from mainland Chinese (CHN) and US participants as they viewed and rated fearful and neutral images displaying either social or non-social contexts.

View Article and Find Full Text PDF

Objective: Using dynamic causal modeling (DCM), we examined how credibility and reliability affected the way brain regions exert causal influence over each other-effective connectivity (EC)-in the context of trust in automation.

Background: Multiple brain regions of the central executive network (CEN) and default mode network (DMN) have been implicated in trust judgment. However, the neural correlates of trust judgment are still relatively unexplored in terms of the directed information flow between brain regions.

View Article and Find Full Text PDF