Publications by authors named "Sanghyeok Yang"

Coherent light detection and ranging (LiDAR), particularly the frequency-modulated continuous-wave LiDAR, is a robust optical imaging technology for measuring long-range distance and velocity in three dimensions (3D). We propose a spatio-spectral coherent LiDAR based on a unique wavelength-swept laser to enable both axial coherent ranging and lateral spatio-spectral beam scanning simultaneously. Instead of the conventional unidirectional wavelength-swept laser, a flutter-wavelength-swept laser (FWSL) successfully decoupled bidirectional wavelength modulation and continuous wavelength sweep, which overcame the measurable distance limited by the sampling process.

View Article and Find Full Text PDF
Article Synopsis
  • Continuous advancements in electronic devices beyond traditional silicon require the integration of ferroelectric and semiconductor materials, particularly hafnium oxide (HfO).
  • Recent research shows that local helium (He) implantation can activate ferroelectric properties in HfO, although the mechanisms behind this process are still not fully understood.
  • The study explores various factors like molar volume changes and vacancy dynamics caused by He ion implantation, which provides insights into the origins of ferroelectricity and potential for developing new nanoengineered materials.
View Article and Find Full Text PDF

By controlling the configuration of polymorphic phases in high-k Hf Zr O thin films, new functionalities such as persistent ferroelectricity at an extremely small scale can be exploited. To bolster the technological progress and fundamental understanding of phase stabilization (or transition) and switching behavior in the research area, efficient and reliable mapping of the crystal symmetry encompassing the whole scale of thin films is an urgent requisite. Atomic-scale observation with electron microscopy can provide decisive information for discriminating structures with similar symmetries.

View Article and Find Full Text PDF

Magnetic order has been proposed to arise from a variety of defects, including vacancies, antisites, and grain boundaries, which are relevant in numerous electronics and spintronics applications. Nevertheless, its magnetism remains controversial due to the lack of structural analysis. The escalation of ferromagnetism in vanadium-doped WSe monolayer is herein demonstrated by tailoring complex configurations of Se vacancies (Se ) via post heat-treatment.

View Article and Find Full Text PDF

Neuromorphic computing has garnered significant attention because it can overcome the limitations of the current von-Neumann computing system. Analog synaptic devices are essential for realizing hardware-based artificial neuromorphic devices; however, only a few systematic studies in terms of both synaptic materials and device structures have been conducted so far, and thus, further research is required in this direction. In this study, we demonstrate the synaptic characteristics of a ferroelectric material-based thin-film transistor (FeTFT) that uses partial switching of ferroelectric polarization to implement analog conductance modulation.

View Article and Find Full Text PDF
Article Synopsis
  • Introducing point defects can enhance thermoelectric properties, but high temperatures often lead to the formation of vacancies, which negatively affect performance.
  • A study using PbTe showed that doping with Ag can suppress these vacancies, resulting in a high thermoelectric figure of merit (zT ≈ 2.1 at 723 K).
  • The combination of defect and carrier engineering improves performance by maintaining a high power factor and reducing thermal conductivity.
View Article and Find Full Text PDF

Atomic dopants and defects play a crucial role in creating new functionalities in 2D transition metal dichalcogenides (2D TMDs). Therefore, atomic-scale identification and their quantification warrant precise engineering that widens their application to many fields, ranging from development of optoelectronic devices to magnetic semiconductors. Scanning transmission electron microscopy with a sub-Å probe has provided a facile way to observe local dopants and defects in 2D TMDs.

View Article and Find Full Text PDF