Silicon nanowires (Si NWs) have attracted considerable interest owing to their distinctive properties, which render them promising candidates for a wide range of advanced applications in electronics, photonics, energy storage, and sensing. However, challenges in achieving large-scale production, high uniformity, and shape control limit their practical use. This study presents a novel fabrication approach combining nanoimprint lithography, nanotransfer printing, and metal-assisted chemical etching to produce highly uniform and shape-controlled Si NW arrays.
View Article and Find Full Text PDFObjective: Striatal dopamine dysfunction caused by cortical abnormalities is a leading hypothesis of schizophrenia. Although prefrontal cortical pathology is negatively correlated with striatal dopamine synthesis, the relationship between structural frontostriatal connectivity and striatal dopamine synthesis has not been proved in patients with schizophrenia with different treatment response. We therefore investigated the relationship between frontostriatal connectivity and striatal dopamine synthesis in treatment-responsive schizophrenia (non-TRS) and compared them to treatment-resistant schizophrenia (TRS) and healthy controls (HC).
View Article and Find Full Text PDFNanotransfer printing techniques have attracted significant attention due to their outstanding simplicity, cost-effectiveness, and high throughput. However, conventional methods a chemical medium hamper the efficient fabrication with large-area uniformity and rapid development of electronic and photonic devices. Herein, we report a direct chemisorption-assisted nanotransfer printing technique based on the nanoscale lower melting effect, which is an enabling technology for two- or three-dimensional nanostructures with feature sizes ranging from tens of nanometers up to a 6 in.
View Article and Find Full Text PDFThere is broad interest in developing photonically active substrates from naturally abundant, minimally processed materials that can help to overcome the environmental challenges of synthetic plastic substrates while also gaining inspiration from biological design principles. To date, most efforts have focused on rationally engineering the micro- and nanoscale structural properties of cellulose-based materials by tuning fibril and fiber dimensions and packing along with chemical modifications, while there is largely untapped potential to design photonically active substrates from other classes of natural materials with distinct morphological features. Herein, the fabrication of a flexible pollen-derived substrate is reported, which exhibits high transparency (>92%) and high haze (>84%) on account of the micro- and nanostructure properties of constituent pollen particles that are readily obtained from nature and require minimal extraction or processing to form the paper-like substrate based on colloidal self-assembly.
View Article and Find Full Text PDFThe application of strain into GeSn alloys can effectively modulate the band structures, thus creating novel electronic and photonic devices. Raman spectroscopy is a powerful tool for characterizing strain; however, the lack of Raman coefficient makes it difficult for accurate determination of strain in GeSn alloys. Here, we have investigated the Raman-strain function of GeSnalong 〈1 0 0〉 and 〈1 1 0〉 directions.
View Article and Find Full Text PDFInterdigitated photodetectors (IPDs) based on the two-dimensional electron gas (2DEG) at the AlGaN/GaN interface have gained prominence as high sensitivity ultraviolet (UV) PDs due to their excellent optoelectronic performance. However, most 2DEG-IPDs have been built on rigid substrates, thus limiting the use of 2DEG-IPDs in flexible and wearable applications. In this paper, we have demonstrated high performance flexible AlGaN/GaN 2DEG-IPDs using AlGaN/GaN 2DEG heterostructure membranes created from 8 in.
View Article and Find Full Text PDFBackground: During the COVID-19 pandemic, the use of telemedicine as a way to reduce COVID-19 infections was noted and consequently deregulated. However, the degree of telemedicine regulation varies from country to country, which may alter the widespread use of telemedicine. This study aimed to clarify the telepsychiatry regulations for each collaborating country/region before and during the COVID-19 pandemic.
View Article and Find Full Text PDFOne of the main challenges in the widespread utilization of localized plasmon resonance-based biosensors is the fabrication of large-area and low-cost plasmonic nanostructures. In this work, we fabricated large-area and low-cost complementary plasmonic biosensors such as nanohole and nanodisk arrays using dual nanotransfer printing (NTP) with a single metal deposition and a single reusable mold. The suspended nanohole arrays and the suspended nanodisk arrays were fabricated using the subsequent dry etching process.
View Article and Find Full Text PDFWith the view towards future non-volatile random access memories that can be integrated at a large scale, extensive study on resistive switching (RS) devices arranged in a crossbar array is currently underway. Although the crossbar array architecture offers relatively simple and acceptable scalability, the presence of sneak current is recognized as a critical issue that needs to be resolved at device level. In addressing this issue, we demonstrate a new type of RS device fabricated by combining graphene oxide (G-O) and zinc oxide (ZnO) with highly asymmetric current-voltage (I-V) characteristics depending on the polarity of bias voltage.
View Article and Find Full Text PDFIn this study, a combined system of microneedles and a triboelectric nanogenerator (TENG) has been developed for drug delivery. A triboelectric device, which converts mechanical energy into alternating current (AC), was chosen to replace the electrophoresis (EP) effect. To directly generate triboelectricity from salmon deoxyribonucleic acid (SDNA)-based microneedles, a triboelectric series of SDNA film and chargeable polymers (polyimide and Teflon) was studied.
View Article and Find Full Text PDFAripiprazole's effects on cognitive function in patients with schizophrenia are unclear because of the difficulty in disentangling specific effects on cognitive function from secondary effects due to the improvement in other schizophrenic symptoms. One approach to address this is to use an intermediate biomarker to investigate the relationship between the drug's effect on the brain and change in cognitive function. This study aims to investigate aripiprazole's effect on working memory by determining the correlation between dopamine D2/3 (D2/3) receptor occupancy and working memory of patients with schizophrenia.
View Article and Find Full Text PDFWe report the realization of a transparent display using glass covered by a nanopatterned quantum dot (QD) film with good transmittance. The film was fabricated by nanoimprint lithography (NIL) and spin coating of colloidal QDs with specificexcitation maxima. The produced nanopatterned QD film was attached to transparent glass, enabling active image generation using a laser light source of a specific wavelength.
View Article and Find Full Text PDFA novel method for fabricating 3D metallic nanostructures to be used in polarized color filters based on nanoimprint lithography, electron-beam evaporation, and nanowelding is proposed. The shape of the nanostructures can be controlled by adjusting the temperature for the nanowelding process. Ag nanowires deposited on polymer patterns are accumulated by the nanowelding process to build up diverse 3D nanostructures.
View Article and Find Full Text PDFWe investigated the preparation and performance of large-area transmission-type flexible plasmonic color filters (PCFs). These large-area PCFs were fabricated based on a nanotransfer printing (nTP) process that involves nanoimprint-based planarization. This process is a simple surface treatment for easy transfer of a metal to a flexible plastic substrate and formation of patterned aluminum nanodots and nanoholes on a substrate surface with poor roughness.
View Article and Find Full Text PDFMoxibustion is a treatment that uses thermal stimulation generated when herbal materials are burned, indirectly or directly, on the affected area or acupoint. Three cases are presented to report the efficacy of direct moxibustion on cutaneous warts. Three patients with chronic cutaneous warts received direct moxibustion made of Artemisia argyi (Dongbang Inc.
View Article and Find Full Text PDFOver the past decade, most of secret image sharing schemes have been proposed by using Shamir's technique. It is based on a linear combination polynomial arithmetic. Although Shamir's technique based secret image sharing schemes are efficient and scalable for various environments, there exists a security threat such as Tompa-Woll attack.
View Article and Find Full Text PDF