Acid mine drainage (AMD) formation is mainly caused by the oxidation of pyrite. Carrier-microencapsulation (CME) using metal-catecholate complexes has been proposed to passivate sulfide minerals by forming surface-protective coatings on their surfaces. Among the various metal-catecholate complexes, Ti-catecholate formed stable coatings having superior acid-resistance, but a thick enough passivating film required considerable time (ca.
View Article and Find Full Text PDFJ Environ Manage
October 2021
Acid mine drainage (AMD) with toxic arsenic (As) is commonly generated from the tailings storage facilities (TSFs) of sulfide mines due to the presence of As-bearing sulfide minerals (e.g., arsenopyrite, realgar, orpiment, etc.
View Article and Find Full Text PDFMineral processing, pyro- and hydrometallurgical processes of auriferous sulfide ores and porphyry copper deposits (PCDs) generate arsenopyrite-rich wastes. These wastes are disposed of into the tailings storage facilities (TSF) in which toxic arsenic (As) is leached out and acid mine drainage (AMD) is generated due to the oxidation of arsenopyrite (FeAsS). To suppress arsenopyrite oxidation, this study investigated the passivation of arsenopyrite by forming ferric phosphate (FePO) coating on its surface using ferric-catecholate complexes and phosphate simultaneously.
View Article and Find Full Text PDFMining activities often generate large amounts of sulfide-rich wastes containing arsenopyrite (FeAsS), which when dissolved releases toxic arsenic (As) and generates acid mine drainage (AMD) that are both disastrous to the environment. To suppress arsenopyrite dissolution, a technique that selectively coats sulfide minerals with a protective layer of Al-oxyhydroxide called Al-based carrier-microencapsulation (CME) was developed. Although a previous study of the authors showed that Al-based CME could significantly limit arsenopyrite dissolution, nature of the coating formed on arsenopyrite, including its electrochemical properties, is still not well understood.
View Article and Find Full Text PDFAcid mine/rock drainage (AMD/ARD), effluents with low pH and high concentrations of hazardous and toxic elements generated when sulfide-rich wastes are exposed to the environment, is considered as a serious environmental problem encountered by the mining and mineral processing industries around the world. Remediation options like neutralization, adsorption, ion exchange, membrane technology, biological mediation, and electrochemical approach have been developed to reduce the negative environmental impacts of AMD on ecological systems and human health. However, these techniques require the continuous supply of chemicals and energy, expensive maintenance and labor cost, and long-term monitoring of affected ecosystems until AMD generation stops.
View Article and Find Full Text PDFAmmonium thiosulfate solution is an ideal lixiviant to extract gold (Au) from electronic wastes (E-wastes) because it is non-toxic, less corrosive, and more selective than conventional cyanide or halide solutions. It was reported recently, however, that Au leaching efficiency in ammonium thiosulfate medium dramatically decreased at high solid-to-liquid ratios (S/L), even though the amounts of reagents used were in excess. To understand how this occurred, leaching experiments were conducted using printed circuit boards (PCBs) from waste mobile phones, and Au distribution in the leaching residues was examined by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX).
View Article and Find Full Text PDFThis paper describes the recovery of gold (Au) from shredder light fraction (SLF) of a recycling plant by flotation and leaching. SLF is typically sent to landfills as waste, but it still contains substantial amounts of Au, and other metals like Cu and Fe. The SLF sample used in this study contains 0.
View Article and Find Full Text PDFPyrite (FeS), the most common sulfide mineral in nature, plays an important role in the formation of acid mine drainage (AMD), one of the most serious environmental problems after the closure of mines and mineral processing operations. Likewise, arsenopyrite (FeAsS) is an important sulfide mineral because its dissolution releases toxic arsenic (As) into the environment. To mitigate the serious environmental problems caused by pyrite and arsenopyrite, this study investigated carrier-microencapsulation (CME) using Al-catecholate complexes, a technique that selectively forms protective coatings on the surfaces of sulfide minerals, by electrochemical techniques and batch leaching experiments coupled with surface sensitive characterization techniques.
View Article and Find Full Text PDFTaehan Kanho Hakhoe Chi
August 2007
Purpose: The purpose of this study was to develop and evaluate the effects of a support group intervention on the burden of primary family caregivers of stroke patients.
Method: A nonequivalent control group pretest-posttest design was used. The subjects were 36 primary family caregivers of stroke patients [experimental(N=18) and control(N=18) groups] in a neurosurgery ward of a university hospital.