Publications by authors named "Sanghamitra Sahoo"

In an aging population, intense interest has shifted toward prolonging health span. Mounting evidence suggests that cellular reactive species are propagators of cell damage, inflammation, and cellular senescence. Thus, such species have emerged as putative provocateurs and targets for senolysis, and a clearer understanding of their molecular origin and regulation is of paramount importance.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a fatal cardiopulmonary disease characterized by increased vascular cell proliferation with apoptosis resistance and occlusive remodeling of the small pulmonary arteries. The Notch family of proteins subserves proximal signaling of an evolutionarily conserved pathway that effects cell proliferation, fate determination, and development. In endothelial cells (ECs), Notch receptor 2 (Notch2) was shown to promote endothelial apoptosis.

View Article and Find Full Text PDF

Senescent cells withdraw from the cell cycle and do not proliferate. The prevalence of senescent compared to normally functioning parenchymal cells increases with age, impairing tissue and organ homeostasis. A contentious principle governing this process has been the redox theory of aging.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a rapidly degenerating and devastating disease of increased pulmonary vessel resistance leading to right heart failure. Palliative modalities remain limited despite recent endeavors to investigate the mechanisms underlying increased pulmonary vascular resistance (PVR), i.e.

View Article and Find Full Text PDF

Despite numerous reports implicating NADPH oxidases (Nox) in the pathogenesis of many diseases, precise regulation of this family of professional reactive oxygen species (ROS) producers remains unclear. A unique member of this family, Nox1 oxidase, functions as either a canonical or hybrid system using Nox organizing subunit 1 (NoxO1) or p47(phox), respectively, the latter of which is functional in vascular smooth muscle cells (VSMC). In this manuscript, we identify critical requirement of ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50; aka NHERF1) for Nox1 activation and downstream responses.

View Article and Find Full Text PDF

Background: Vascular hyperproliferative disorders are characterized by excessive smooth muscle cell (SMC) proliferation leading to vessel remodeling and occlusion. In pulmonary arterial hypertension (PAH), SMC phenotype switching from a terminally differentiated contractile to synthetic state is gaining traction as our understanding of the disease progression improves. While maintenance of SMC contractile phenotype is reportedly orchestrated by a MEF2C-myocardin (MYOCD) interplay, little is known regarding molecular control at this nexus.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) and oxidative stress have long been linked to aging and diseases prominent in the elderly such as hypertension, atherosclerosis, diabetes and atrial fibrillation (AF). NADPH oxidases (Nox) are a major source of ROS in the vasculature and are key players in mediating redox signalling under physiological and pathophysiological conditions. In this review, we focus on the Nox-mediated ROS signalling pathways involved in the regulation of 'longevity genes' and recapitulate their role in age-associated vascular changes and in the development of age-related cardiovascular diseases (CVDs).

View Article and Find Full Text PDF

(1,4)-3,3-Dimethyl-1,2,3,4-tetrahydro-1,4-(epiminomethano)naphthalenes were synthesized in 2-3 steps from commercially available materials and assessed for specificity and effectiveness across a range of Nox isoforms. The -pentyl and -methylenethiophene substituted analogs 11g and 11h emerged as selective Nox2 inhibitors with cellular IC values of 20 and 32 μM, respectively.

View Article and Find Full Text PDF

Excessive vascular and colon epithelial reactive oxygen species production by NADPH oxidase isoform 1 (Nox1) has been implicated in a number of disease states, including hypertension, atherosclerosis, and neoplasia. A peptide that mimics a putative activation domain of the Nox1 activator subunit NOXA1 (NOXA1 docking sequence, also known as NoxA1ds) potently inhibited Nox1-derived superoxide anion (O2·-) production in a reconstituted Nox1 cell-free system, with no effect on Nox2-, Nox4-, Nox5-, or xanthine oxidase-derived reactive oxygen species production as measured by cytochrome c reduction, Amplex Red fluorescence, and electron paramagnetic resonance. The ability of NoxA1ds to cross the plasma membrane was tested by confocal microscopy in a human colon cancer cell line exclusively expressing Nox1 (HT-29) using FITC-labeled NoxA1ds.

View Article and Find Full Text PDF

The procoagulant protein tissue factor (F3) is a powerful growth promoter in many tumors, but its mechanism of action is not well understood. More generally, it is unknown whether hemostatic factors expressed on tumor cells influence tissue factor-mediated effects on cancer progression. In this study, we investigated the influence of tissue factor, endothelial cell protein C receptor (EPCR, PROCR), and protease activated receptor-1 (PAR1, F2R) on the growth of malignant pleural mesothelioma (MPM), using human MPM cells that lack or express tissue factor, EPCR or PAR1, and an orthotopic nude mouse model of MPM.

View Article and Find Full Text PDF

Zinc is an essential trace element for human nutrition and is critical to the structure, stability, and function of many proteins. Zinc ions were shown to enhance activation of the intrinsic pathway of coagulation but down-regulate the extrinsic pathway of coagulation. The protein C pathway plays a key role in blood coagulation and inflammation.

View Article and Find Full Text PDF

Background: Rare failures in amelogenin-based gender typing of individuals have been observed globally. In this study, we report the deletion of a large fragment of the amelogenin gene in 10 individuals out of 4,257 male samples analyzed from 104 different endogamous populations of India.

Methods: Samples were analyzed using commercial genetic profiling kits.

View Article and Find Full Text PDF

Polymorphisms in mitochondrial (mt) DNA and Y-chromosomes of seven socially and linguistically diverse castes and tribes of Eastern India were examined to determine their genetic relationships, their origin, and the influence of demographic factors on population structure. Samples from the Orissa Brahmin, Karan, Khandayat, Gope, Juang, Saora, and Paroja were analyzed for mtDNA hypervariable sequence (HVS) I and II, eight Y-chromosome short tandem repeats (Y-STRs), and lineage-defining mutations diagnostic for Indian- and Eurasian-specific haplogroups. Our results reveal that haplotype diversity and mean pairwise differences (MPD) was higher in caste groups of the region (>0.

View Article and Find Full Text PDF

Understanding the genetic origins and demographic history of Indian populations is important both for questions concerning the early settlement of Eurasia and more recent events, including the appearance of Indo-Aryan languages and settled agriculture in the subcontinent. Although there is general agreement that Indian caste and tribal populations share a common late Pleistocene maternal ancestry in India, some studies of the Y-chromosome markers have suggested a recent, substantial incursion from Central or West Eurasia. To investigate the origin of paternal lineages of Indian populations, 936 Y chromosomes, representing 32 tribal and 45 caste groups from all four major linguistic groups of India, were analyzed for 38 single-nucleotide polymorphic markers.

View Article and Find Full Text PDF

Background: We have examined genetic diversity at fifteen autosomal microsatellite loci in seven predominant populations of Orissa to decipher whether populations inhabiting the same geographic region can be differentiated on the basis of language or ancestry. The studied populations have diverse historical accounts of their origin, belong to two major ethnic groups and different linguistic families. Caucasoid caste populations are speakers of Indo-European language and comprise Brahmins, Khandayat, Karan and Gope, while the three Australoid tribal populations include two Austric speakers: Juang and Saora and a Dravidian speaking population, Paroja.

View Article and Find Full Text PDF

Although microsatellite diversity in autosomal chromosomes has been extensively described for many of the Indian populations, there is still a lacuna left on information about the genetic diversity of tribal populations. This paper reports the genetic data on the three tribal populations belonging to the Austroloid ethnic group from Orissa (Juang, Paroja and Saora). The 15 STR (D3S1358, THO1, D21S11, D18S51, PentaE, D5S818, D13S317, D7S820, D16S539, CSF1PO, PentaD, vWA, D8S1179, TPOX, FGA) polymorphism would help to accentuate the STR database for better understanding of population genetics and forensic applications.

View Article and Find Full Text PDF