Nanotoxicology
February 2023
Particulate and soluble debris are generated by mechanical and non-mechanical degradation of implanted medical devices. Debris containing cobalt and chromium (CoCr) is known to cause adverse biological reactions. Implant-related complications are often diagnosed using radiography, which results in more frequent patient exposure to ionizing radiation.
View Article and Find Full Text PDFMechanistic understanding of the interaction of copper-based nanomaterials with crops is crucial for exploring their application in precision agriculture and their implications on plant health. We investigated the biological response of soybean () plants to the foliar application of copper hydroxide nanowires (CNWs) at realistic exposure concentrations. A commercial copper based-fungicide (Kocide), dissolved copper ions, and untreated controls were used for comparison to identify unique features at physiological, cellular, and molecular levels.
View Article and Find Full Text PDFMetabolomics characterizes low-molecular-weight molecules involved in different biochemical reactions and provides an integrated assessment of the physiological state of an organism. By using liquid chromatography-mass spectrometry targeted metabolomics, we examined the response of green alga to sublethal concentrations of inorganic mercury (IHg) and monomethylmercury (MeHg). We quantified the changes in the levels of 93 metabolites preselected based on the disturbed metabolic pathways obtained in a previous transcriptomics study.
View Article and Find Full Text PDFSilver nanoparticles (AgNPs) are one of the most used engineered nanomaterials. Despite progress in assessing their environmental implications, knowledge gaps exist concerning the metabolic perturbations induced by AgNPs on phytoplankton, essential organisms in global biogeochemical cycles and food-web dynamics. We combine targeted metabolomics, biouptake and physiological response studies to elucidate metabolic perturbations in alga Poterioochromonas malhamensis induced by AgNPs and dissolved Ag.
View Article and Find Full Text PDFThis study explored the use of foliar sprays with nanoparticles (NP) of B, CuO, MnO, SiO, TiO, and ZnO to protect watermelon against Fusarium wilt. Leaves of young watermelon plants were sprayed (1 to 2 ml per plant) with NP suspensions (500 to 1,000 µg/ml) and were planted in potting mix infested with Fusarium oxysporum f. sp.
View Article and Find Full Text PDFWith their growing production and application, engineered nanoparticles (NPs) are increasingly discharged into the environment. The released NPs can potentially interact with pre-existing contaminants, leading to biological effects (bioaccumulation and/or toxicity) that are poorly understood. Most studies on NPs focus on single analyte exposure; the existing literature on joint toxicity of NPs and co-existing contaminants is rather limited but beginning to develop rapidly.
View Article and Find Full Text PDFThis study evaluates the bioaccumulation of unweathered (U) and weathered (W) CuO in NP, bulk and ionic form (0-400 mg/kg) by lettuce exposed for 70 d in soil co-contaminated with field incurred chlordane. To evaluate CuO trophic transfer, leaves were fed to crickets (Acheta domestica) for 15 d, followed by insect feeding to lizards (Anolis carolinensis). Upon weathering, the root Cu content of the NP treatment increased 214% (327 ± 59.
View Article and Find Full Text PDFA collaborative study was conducted to evaluate stable isotope dilution assay (SIDA) and LC-MS/MS for the simultaneous determination of aflatoxins B, B, G, and G; deoxynivalenol; fumonisins B, B, and B; ochratoxin A; HT-2 toxin; T-2 toxin; and zearalenone in foods. Samples were fortified with 12 C uniformly labeled mycotoxins (C-IS) corresponding to the native mycotoxins and extracted with acetonitrile/water (50:50 v/v), followed by centrifugation, filtration, and LC-MS/MS analysis. In addition to certified reference materials, the six participating laboratories analyzed corn, peanut butter, and wheat flour fortified with the 12 mycotoxins at concentrations ranging from 1.
View Article and Find Full Text PDFSoil organic matter plays a major role in determining the fate of the engineered nanomaterials (ENMs) in the soil matrix and effects on the residing plants. In this study, kidney bean plants were grown in soils varying in organic matter content and amended with 0-500mg/kg cerium oxide nanoparticles (nano-CeO2) under greenhouse condition. After 52days of exposure, cerium accumulation in tissues, plant growth and physiological parameters including photosynthetic pigments (chlorophylls and carotenoids), net photosynthesis rate, transpiration rate, and stomatal conductance were recorded.
View Article and Find Full Text PDFFunctional toxicology has enabled the identification of genes involved in conferring tolerance and sensitivity to engineered nanomaterial (ENM) exposure in the model plant Arabidopsis thaliana (L.) Heynh. Several genes were found to be involved in metabolic functions, stress response, transport, protein synthesis, and DNA repair.
View Article and Find Full Text PDFThere has been great interest in the use of carbon nano-materials (CNMs) in agriculture. However, the existing literature reveals mixed effects from CNM exposure on plants, ranging from enhanced crop yield to acute cytotoxicity and genetic alteration. These seemingly inconsistent research-outcomes, taken with the current technological limitations for in situ CNM detection, present significant hurdles to the wide scale use of CNMs in agriculture.
View Article and Find Full Text PDFMass-flow modeling of engineered nanomaterials (ENMs) indicates that a major fraction of released particles partition into soils and sediments. This has aggravated the risk of contaminating agricultural fields, potentially threatening associated food webs. To assess possible ENM trophic transfer, cerium accumulation from cerium oxide nanoparticles (nano-CeO2) and their bulk equivalent (bulk-CeO2) was investigated in producers and consumers from a terrestrial food chain.
View Article and Find Full Text PDFThe rapidly growing literature on the response of edible plants to nanoceria has provided evidence of its uptake and bioaccumulation, which delineates a possible route of entry into the food chain. However, little is known about how the residing organic matter in soil may affect the bioavailability and resulting impacts of nanoceria on plants. Here, we examined the effect of nanoceria exposure (62.
View Article and Find Full Text PDFInformation about changes in physiological and agronomic parameters through the life cycle of plants exposed to engineered nanoparticles (NPs) is scarce. In this study, corn (Zea mays) plants were cultivated to full maturity in soil amended with either nCeO2 or nZnO at 0, 400, and 800 mg/kg. Gas exchange was monitored every 10 days, and at harvest, bioaccumulation of Ce and Zn in tissues was determined by ICP-OES/MS.
View Article and Find Full Text PDFThe accumulation and trophic transfer of nanoparticle (NP) or bulk CeO2 through a terrestrial food chain was evaluated. Zucchini (Cucurbita pepo L.) was planted in soil with 0 or 1228 μg/g bulk or NP CeO2.
View Article and Find Full Text PDFOverwhelming use of engineered nanoparticles demands rapid assessment of their environmental impacts. The transport of cerium oxide nanoparticles (nCeO2) in plants and their impact on cellular homeostasis as a function of exposure duration is not well understood. In this study, kidney bean plants were exposed to suspensions of ∼ 8 ± 1 nm nCeO2 (62.
View Article and Find Full Text PDFEnvironmental matrices including soils, sediments, and living organisms are reservoirs of several essential as well as non-essential elements. Accurate qualitative and quantitative information on the distribution and interaction of biologically significant elements is vital to understand the role of these elements in environmental and biological samples. Synchrotron micro-X-ray fluorescence (μ-SXRF) allows in situ mapping of biologically important elements at nanometer to sub-micrometer scale with high sensitivity, negligible sample damage and enable tuning of the incident energy as desired.
View Article and Find Full Text PDFThe uptake, bioaccumulation, biotransformation, and risks of nanomaterials (NMs) for food crops are still not well understood. Very few NMs and plant species have been studied, mainly at the very early growth stages of the plants. Most of the studies, except one with multiwalled carbon nanotubes performed on the model plant Arabidopsis thaliana and another with ZnO nanoparticles (NPs) on ryegrass, reported the effect of NMs on seed germination or 15-day-old seedlings.
View Article and Find Full Text PDF