Maternal immune activation (MIA) contributes to behavioural abnormalities associated with neurodevelopmental disorders in both primate and rodent offspring. In humans, epidemiological studies suggest that exposure of fetuses to maternal inflammation increases the likelihood of developing autism spectrum disorder. In pregnant mice, interleukin-17a (IL-17a) produced by T helper 17 (T17) cells (CD4 T helper effector cells involved in multiple inflammatory conditions) induces behavioural and cortical abnormalities in the offspring exposed to MIA.
View Article and Find Full Text PDFViral infection during pregnancy is correlated with increased frequency of neurodevelopmental disorders, and this is studied in mice prenatally subjected to maternal immune activation (MIA). We previously showed that maternal T helper 17 cells promote the development of cortical and behavioural abnormalities in MIA-affected offspring. Here we show that cortical abnormalities are preferentially localized to a region encompassing the dysgranular zone of the primary somatosensory cortex (S1DZ).
View Article and Find Full Text PDFViral infection during pregnancy has been correlated with increased frequency of autism spectrum disorder (ASD) in offspring. This observation has been modeled in rodents subjected to maternal immune activation (MIA). The immune cell populations critical in the MIA model have not been identified.
View Article and Find Full Text PDFWe have previously reported that Smad6, one of the inhibitory Smads of transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) signaling, inhibits Toll-like receptor (TLR) 4 signaling by disrupting the Pellino-1-mediated TLR4 signaling complex. Here, we developed Smaducin-6, a novel membrane-tethered palmitic acid-conjugated Smad6-derived peptide composed of amino acids 422-441 of Smad6. Smaducin-6 interacted with Pellino-1, located in the inner membrane, thereby disrupting the formation of IRAK1-, RIP1-, IKKε-mediated TLR4 signaling complexes.
View Article and Find Full Text PDFThe abilities of NKG2D ligands to specifically mark stressed or transformed cells and activate NK cells suggest the possibility that the expression levels of NKG2D ligands in cancers may be helpful to predict the efficacy of NK cell-based cancer immunotherapy. Therefore, a multiplex RT-PCR was developed and used for rapid and simultaneous analysis of the expression level of NKG2D ligands in cancer cells and tissues. With total RNAs isolated from various cancer cell lines, the multiplex RT-PCR revealed various expression patterns of NKG2D ligands.
View Article and Find Full Text PDFOxidative stress to dopaminergic neurons is believed to be one of the causes of neurodegeneration in Parkinson's disease (PD). It was investigated whether N-acetylcysteine (NAC) and l-2-oxothiazolidine-4-carboxylate (OTC) have a preventive effect in an oxidative stress-induced model of PD. We found that NAC and OTC prevent degradation of PARP during auto-oxidized dopamine- or auto-oxidized L-DOPA-induced apoptosis in PC12 cells.
View Article and Find Full Text PDF