Publications by authors named "Sangderk Lee"

Background & Aims: Recent studies have implicated platelets, particularly α-granules, in the development of non-alcoholic steatohepatitis (NASH). However, the specific mechanisms involved have yet to be determined. Notably, thrombospondin 1 (TSP1) is a major component of the platelet α-granules released during platelet activation.

View Article and Find Full Text PDF

Mounting evidence highlights the crucial role of aging in the pathogenesis of Alzheimer's disease (AD). We have previously explored human apoE-targeted replacement mice across different ages and identified distinct molecular pathways driven by aging. However, the specific contribution of different brain cell types to the gene modules underlying these pathways remained elusive.

View Article and Find Full Text PDF

The E4 allele of Apolipoprotein E (APOE) is associated with both metabolic dysfunction and a heightened pro-inflammatory response: two findings that may be intrinsically linked through the concept of immunometabolism. Here, we combined bulk, single-cell, and spatial transcriptomics with cell-specific and spatially resolved metabolic analyses in mice expressing human APOE to systematically address the role of APOE across age, neuroinflammation, and AD pathology. RNA sequencing (RNA-seq) highlighted immunometabolic changes across the APOE4 glial transcriptome, specifically in subsets of metabolically distinct microglia enriched in the E4 brain during aging or following an inflammatory challenge.

View Article and Find Full Text PDF

Apolipoprotein E4 (APOE4) is the strongest risk allele associated with the development of late onset Alzheimer's disease (AD). Across the CNS, astrocytes are the predominant expressor of while also being critical mediators of neuroinflammation and cerebral metabolism. APOE4 has been consistently linked with dysfunctional inflammation and metabolic processes, yet insights into the molecular constituents driving these responses remain unclear.

View Article and Find Full Text PDF

As the elderly population increases, chronic, age-associated diseases are challenging healthcare systems around the world. Nutrient limitation is well known to slow the aging process and improve health. Regrettably, practicing nutrient restriction to improve health is unachievable for most people.

View Article and Find Full Text PDF

Lipoprotein lipase (LPL) hydrolyzes the triglyceride core of lipoproteins and also functions as a bridge, allowing for lipoprotein and cholesterol uptake. Transgenic mice expressing LPL in adipose tissue under the control of the adiponectin promoter (AdipoQ-LPL) have improved glucose metabolism when challenged with a high fat diet. Here, we studied the transcriptional response of the adipose tissue of these mice to acute high fat diet exposure.

View Article and Find Full Text PDF

Background & Aims: Thrombospondin 1 (TSP1) is a multifunctional matricellular protein. We previously showed that TSP1 has an important role in obesity-associated metabolic complications, including inflammation, insulin resistance, cardiovascular, and renal disease. However, its contribution to obesity-associated non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD or NASH) remains largely unknown; thus, we aimed to determine its role.

View Article and Find Full Text PDF

Heparin-binding EGF-like growth factor (HB-EGF) is an EGF family member that interacts with epidermal growth factor receptor (EGFR) and ERBB4. Since HB-EGF was first identified as a novel growth factor secreted from a human macrophage cell line, numerous pathological and physiological functions related to cell proliferation, migration, and inflammation have been reported. Notably, the expression of HB-EGF is sensitively upregulated by oxidative stress in the endothelial cells and functions for auto- and paracrine-EGFR signaling.

View Article and Find Full Text PDF

Objective: The upregulated expression of heparin binding EGF-like growth factor (HB-EGF) in the vessel and circulation is associated with risk of cardiovascular disease. In this study, we tested the effects of HB-EGF targeting using HB-EGF-specific antisense oligonucleotide (ASO) on the development of aortic aneurysm in a mouse aneurysm model.

Approach And Results: Low-density lipoprotein receptor (LDLR) deficient mice (male, 16 weeks of age) were injected with control and HB-EGF ASOs for 10 weeks.

View Article and Find Full Text PDF
Article Synopsis
  • - Atherosclerosis, which leads to serious cardiovascular issues like heart attacks and strokes, is fueled by oxidized phospholipids such as OxPAPC that accumulate in arterial lesions and activate endothelial cells, a key step in the disease.
  • - The study focuses on Epoxyisoprostane E2 (EI), an active oxidized fatty acid from OxPAPC, which stimulates oxidative stress in endothelial cells, resulting in increased expression of the oxidative stress response gene OKL38 and the antioxidant gene HO-1.
  • - EI's stimulation of these genes occurs through activation of the Nrf2 signaling pathway, and using inhibitors like Apocynin and N-acetyl-cysteine limited this expression,
View Article and Find Full Text PDF

The goal of these studies was to determine the effect of 5,6-epoxyisoprostane, EI, on human aortic endothelial cells (HAEC). EI can form as a phospholipase product of 1-palmitoyl-2-(5,6-epoxyisoprostane E2)-sn-glycero-3-phosphocholine, PEIPC, a proinflammatory molecule that accumulates in sites of inflammation where phospholipases are also increased. To determine the effect of EI on HAEC, we synthesized several stereoisomers of EI using a convergent approach from the individual optically pure building blocks, the epoxyaldehydes 5 and 6 and the bromoenones 14 and 16.

View Article and Find Full Text PDF

There is increasing clinical evidence that phospholipid oxidation products (Ox-PL) play a role in atherosclerosis. This review focuses on the mechanisms by which Ox-PL interact with endothelial cells, monocyte/macrophages, platelets, smooth muscle cells, and HDL to promote atherogenesis. In the past few years major progress has been made in identifying these mechanisms.

View Article and Find Full Text PDF

Oxidation products of 1-palmitoyl-2-arachidonoyl-sn-glycerol-3-phosphatidylcholine (PAPC), referred to as OxPAPC, and an active component, 1-palmitoyl-2-(5,6-epoxyisoprostane E₂)-sn-glycero-3-phosphatidylcholine (PEIPC), accumulate in atherosclerotic lesions and regulate over 1,000 genes in human aortic endothelial cells (HAEC). We previously demonstrated that OxPNB, a biotinylated analog of OxPAPC, covalently binds to a number of proteins in HAEC. The goal of these studies was to gain insight into the binding mechanism and determine whether binding regulates activity.

View Article and Find Full Text PDF

Objective: Atherosclerosis is a chronic inflammatory disease initiated by monocyte recruitment and retention in the vessel wall. An important mediator of monocyte endothelial interaction is the chemokine interleukin (IL)-8. The oxidation products of phospholipids, including oxidized 1-palmitoyl-2-arachidonyl-sn-glycerol-3-phosphocholine (Ox-PAPC), accumulate in atherosclerotic lesions and strongly induce IL-8 in human aortic endothelial cells (HAECs).

View Article and Find Full Text PDF

Introduction: Oxidation products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (OxPAPC) differentially modulate endothelial cell (EC) barrier function in a dose-dependent fashion. Vascular endothelial growth factor receptor-2 (VEGFR2) is involved in the OxPAPC-induced EC inflammatory activation. This study examined a role of VEGFR2 in barrier dysfunction caused by high concentrations of OxPAPC and evaluated downstream signaling mechanisms resulting from the effect of OxPAPC in EC from pulmonary and systemic circulation.

View Article and Find Full Text PDF

Objective: Chronic infection has long been postulated as a stimulus for atherogenesis. Pseudomonas aeruginosa infection has been associated with increased atherosclerosis in rats, and these bacteria produce a quorum-sensing molecule 3-oxo-dodecynoyl-homoserine lactone (3OC12-HSL) that is critical for colonization and virulence. Paraoxonase 2 (PON2) hydrolyzes 3OC12-HSL and also protects against the effects of oxidized phospholipids thought to contribute to atherosclerosis.

View Article and Find Full Text PDF

Rationale: Oxidized palmitoyl arachidonyl phosphatidylcholine (Ox-PAPC) accumulates in atherosclerotic lesions, is proatherogenic, and influences the expression of more than 1000 genes in endothelial cells.

Objective: To elucidate the major pathways involved in Ox-PAPC action, we conducted a systems analysis of endothelial cell gene expression after exposure to Ox-PAPC.

Methods And Results: We used the variable responses of primary endothelial cells from 149 individuals exposed to Ox-PAPC to construct a network that consisted of 11 groups of genes, or modules.

View Article and Find Full Text PDF

Gene by environment (GxE) interactions are clearly important in many human diseases, but they have proven to be difficult to study on a molecular level. We report genetic analysis of thousands of transcript abundance traits in human primary endothelial cell (EC) lines in response to proinflammatory oxidized phospholipids implicated in cardiovascular disease. Of the 59 most regulated transcripts, approximately one-third showed evidence of GxE interactions.

View Article and Find Full Text PDF

Previous studies from our group have demonstrated that oxidized 1-palmitoyl-2-arachidonyl-sn-glycerol-3-phosphocholine (Ox-PAPC) activates over 1000 genes in human aortic endothelial cells (HAECs). Prominent among these are genes regulating inflammation, cholesterol homeostasis, antioxidant enzymes, and the unfolded protein response. Previous studies from our lab and others suggested that transcriptional regulation by Ox-PAPC may be controlled, at least in part, by reactive oxygen species.

View Article and Find Full Text PDF

Oxidized-1-palmitoyl-2-arachidonyl-sn-glycerol-3-phosphocholine (Ox-PAPC) has been demonstrated to accumulate in atherosclerotic lesions and regulates expression of more than 1,000 genes in human aortic endothelial cell (HAEC). Among the most highly induced is heme oxygenase-1 (HO-1), a cell-protective antioxidant enzyme, which is sensitively induced by oxidative stress. To identify the pathway by which Ox-PAPC induces HO-1, we focused on the plasma membrane electron transport (PMET) complex, which contains ecto-NADH oxidase 1 (eNOX1) and NADPH:quinone oxidoreductase 1 (NQO1) and affects cellular redox status by regulating levels of NAD(P)H.

View Article and Find Full Text PDF

Autotaxin (ATX) is an autocrine motility factor that promotes cancer cell invasion, cell migration, and angiogenesis. ATX, originally discovered as a nucleotide phosphodiesterase, is known now to be responsible for the lysophospholipid-preferring phospholipase D activity in plasma. As such, it catalyzes the production of lysophosphatidic acid (LPA) from lysophophatidylcholine (LPC).

View Article and Find Full Text PDF

Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) is present in oxidative modified LDL and accumulates in lesions of many chronic inflammatory diseases, such as atherosclerosis. In a microarray study, OxPAPC has been demonstrated to modulate the expression of >700 genes in human aortic endothelial cells. We found that the levels of mRNA for OKL38 [also named Bone marrow Derived Growth Factor (BDGI)], a tumor growth inhibitor, were strongly increased by OxPAPC.

View Article and Find Full Text PDF

GM2-activator protein (GM2AP) is a lysosomal lipid transfer protein with important biological roles in ganglioside catabolism, phospholipid metabolism, and T-cell activation. Previous studies of crystal structures of GM2AP complexed with the physiological ligand GM2 and platelet activating factor (PAF) have shown binding at two specific locations within the spacious apolar pocket and an ordering effect of endogenous resident lipids. To investigate the structural basis of phospholipid binding further, GM2AP was cocrystallized with phosphatidylcholine (PC), known to interact with GM2AP.

View Article and Find Full Text PDF

Immunotherapeutic drugs that mimic sphingosine 1-phosphate (S1P) disrupt lymphocyte trafficking and cause T helper and T effector cells to be retained in secondary lymphoid tissue and away from sites of inflammation. The prototypical therapeutic agent, 2-alkyl-2-amino-1,3-propanediol (FTY720), stimulates S1P signaling pathways only after it is phosphorylated by one or more unknown kinases. We generated sphingosine kinase 2 (SPHK2) null mice to demonstrate that this kinase is responsible for FTY720 phosphorylation and thereby its subsequent actions on the immune system.

View Article and Find Full Text PDF

Envenomation by the brown recluse spider (Loxosceles reclusa) may cause local dermonecrosis and, rarely, coagulopathies, kidney failure and death. A venom phospholipase, SMaseD (sphingomyelinase D), is responsible for the pathological manifestations of envenomation. Recently, the recombinant SMaseD from Loxosceles laeta was demonstrated to hydrolyse LPC (lysophosphatidylcholine) to produce LPA (lysophosphatidic acid) and choline.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionicnqc5p9sknfb4a8913bv7fam0fk5g4q): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once