We theoretically investigated the nitrogen substitution effect on the molecular structure and π-electron delocalization in linear nitrogen-substituted polycyclic aromatic hydrocarbons (N-PAHs). Based on the optimized molecular structures and magnetic field-induced parameters of fused bi- and tricyclic linear N-PAHs, we found that the local π-electron delocalization of subcycles (e.g.
View Article and Find Full Text PDFNanoparticle surfaces are passivated by surface-bound ligands, and their adsorption on synthesized nanoparticles is complicated because of the intricate and low-symmetry surface structures. Thus, it is challenging to precisely investigate ligand adsorption on synthesized nanoparticles. Here, we applied machine-learning-accelerated calculation to experimentally resolved 3D atomic structures of Pt nanoparticles to analyze the complex adsorption behavior of polyvinylpyrrolidone (PVP) ligands on synthesized nanoparticles.
View Article and Find Full Text PDFThermal motion of colloidal nanoparticles and their cohesive interactions are of fundamental importance in nanoscience but are difficult to access quantitatively, primarily due to the lack of the appropriate analytical tools to investigate the dynamics of individual particles at nanoscales. Here, we directly monitor the stochastic thermal motion and coalescence dynamics of gold nanoparticles smaller than 5 nm, using graphene liquid cell (GLC) transmission electron microscopy (TEM). We also present a novel model of nanoparticle dynamics, providing a unified, quantitative explanation of our experimental observations.
View Article and Find Full Text PDFTwo-dimensional (2D) transition metal dichalcogenide (TMD) layers are unit-cell thick materials with tunable physical properties according to their size, morphology, and chemical composition. Their transition of lab-scale research to industrial-scale applications requires process development for the wafer-scale growth and scalable device fabrication. Herein, we report on a new type of atmospheric pressure chemical vapor deposition (APCVD) process that utilizes colloidal nanoparticles as process-scalable precursors for the wafer-scale production of TMD monolayers.
View Article and Find Full Text PDFActive sites and catalytic activity of heterogeneous catalysts is determined by their surface atomic structures. However, probing the surface structure at an atomic resolution is difficult, especially for solution ensembles of catalytic nanocrystals, which consist of heterogeneous particles with irregular shapes and surfaces. Here, we constructed 3D maps of the coordination number (CN) and generalized CN () for individual surface atoms of sub-3 nm Pt nanocrystals.
View Article and Find Full Text PDFThe sol-gel polymerization of alkoxysilanes is a convenient and widely used method for the synthesis of silicon polymers and silicon-organic composites. The development of new sol-gel precursors is very important for obtaining new types of sol-gel products. New condensation polymer precursors containing consecutive silicon atoms-decaisopropoxycyclopentasilane (CPS) and dodecaethoxyneopentasilane (NPS)-were synthesized for the preparation of polysilane-polysiloxane material.
View Article and Find Full Text PDFIn this study, three new fluorescein derivatives-5-bromo-4',5'-dinitrofluorescein (), 5-bromo-4',5'-diaminofluorescein (), and 5-bromo-4',5'-bis(dimethylamino)fluorescein ()-were synthesized and their pH-dependent protolytic equilibria were investigated. In particular, exhibited pH-dependent fluorescence, showing strong emission only at pH 3-6. bears a bromine moiety and thus, can be used in various cross-coupling reactions to prepare derivatives and take advantage of its unique emission properties.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2014
This study details the development of a large-area, three-dimensional (3D), plasmonic integrated electrode (PIE) system. Vertically aligned multiwalled carbon nanotube (VA-MWNT) electrodes are grown and populated with self-assembling silver nanoparticles via thermal evaporation. Due to the geometric and surface characteristics of VA-MWNTs, evaporated silver atoms form nanoparticles approximately 15-20 nm in diameter.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
August 2013
We present the employment of few layer graphene (FLG) as a matrix for the analysis of low molecular weight polymeric compounds using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The practicality of FLG as a matrix for MALDI experiments is demonstrated by analyzing low molecular weight polymers, polar polyethylene glycol (PEG) of 1000 Da and nonpolar polymethylmethacrylate (PMMA) of 650 Da. The high quality MS spectra without low-mass interference signals without any further sampling procedure were acquired.
View Article and Find Full Text PDFAn alternating stack (SG/GN) consisting of SnO₂-functionalized graphene oxide (SG) and amine-functionalized GO (GN) is prepared in solution. The thermally reduced SG/GN (r(SG/GN)) with decreased micro-mesopores and completely eliminated macropores, results in a high reversible capacity and excellent capacity retention (872 mA h g⁻¹ after 200 cycles at 100 mA g⁻¹) when compared to a composite without GN.
View Article and Find Full Text PDFSurface-enhanced Raman scattering (SERS) of graphene on a SiO(2)(300 nm)/Si substrate was investigated by depositing Au nanoparticles using thermal evaporation. This provided a maximum enhancement of 120 times for single-layer graphene at 633 nm excitation. SERS spectra and scan images of single-layer and few-layer graphene were acquired.
View Article and Find Full Text PDFLight-activated proton translocation in halobacteria is driven by photoisomerization of the retinal chromophore within the membrane-bound protein bacteriorhodopsin. The molecular mechanism of this process has been widely debated due to the absence of structural information on the time scale of the reactive dynamics (the initial 0.1-1 ps).
View Article and Find Full Text PDFFemtosecond stimulated Raman spectroscopy is extended to probe ground state anti-Stokes vibrational features. Off resonance, negative anti-Stokes features are seen that are the mirror image of the positive Stokes side spectra. On resonance, the observed dispersive lineshapes are dramatically dependent on the frequencies of the picosecond pump and femtosecond probe pulses used to generate the stimulated Raman spectra.
View Article and Find Full Text PDFWe have developed a tunable femtosecond stimulated Raman spectroscopy (FSRS) apparatus and used it to perform time-resolved resonance Raman experiments with <100 fs temporal and <35 cm(-1) spectral resolution. The key technical change that facilitates this advance is the use of a tunable narrow-bandwidth optical parametric amplifier (NB-OPA) presented recently by Shim et al. (Shim, S.
View Article and Find Full Text PDFJ Phys Chem A
September 2007
Photochromic ring closure reaction dynamics of 1,2-bis(2-methylbenzo[b]thiophen-3-yl)hexafluoro cyclopentene and its derivatives in solution has been studied by femtosecond time-resolved fluorescence. Time-resolved spontaneous fluorescence of the open isomer reveals a fast component of around 1 ps and a slow component on the order of 100 ps. Fluorescence time profiles, reaction quantum yields, and relative populations of the parallel (C(s) symmetry) and antiparallel (C(2) symmetry) conformations indicate that both time components are attributable mostly to the C(2) conformer that undergoes the ring closure reaction.
View Article and Find Full Text PDF