The present study investigates the impact of sputtering configurations on the microstructure and crystallinity of thin-film yttria-stabilized zirconia electrolytes for anodized aluminum oxide-supported all-sputtered thin-film reversible solid oxide cells. Employing various sputtering parameters, such as target-substrate distance and substrate rotation speed, the present study reveals distinct surface characteristics and crystalline structures of thin-film yttria-stabilized zirconia. The microstructure analysis includes scanning electron microscopy and atomic force microscopy examinations, uncovering the influence of the process parameters on the surface morphology, roughness, and grain size.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2023
To overcome significantly sluggish oxygen-ion conduction in the electrolytes of low-temperature solid-oxide fuel cells (SOFCs), numerous researchers have devoted considerable effort to fabricating the electrolytes as thin as possible. However, thickness is not the only factor that affects the electrolyte performance; roughness, grain size, and internal film stress also play a role. In this study, yttria-stabilized zirconia (YSZ) was deposited via a reactive sputtering process to fabricate high-performance thin-film electrolytes.
View Article and Find Full Text PDFThe optimum composition ratio of the anode cermet (Ni-GDC) for solid oxide fuel cells (SOFCs) varies because the electron-collecting mechanism is different depending on its applications. A Co-sputtering method facilitates ratio control with sputtering power adjustment. However, there is a practical issue with fabricating anode cermet with various ratios attributed to the large sputtering yield gap of the metal target, Ni, and the ceramic target, gadolinia-doped ceria (GDC).
View Article and Find Full Text PDFRare earth phosphates have been used extensively in luminescent phosphors, bio-imaging, catalysis, and sensors. However, there is a need to correlate the structural-chemical changes associated with stability and performance. In the present work, hydrothermally synthesized CePO:Sm (x = 0, 5 and 10 mol%) nanorods were annealed at different temperatures to understand the modulations in structure as well as optical and enzyme mimetic properties.
View Article and Find Full Text PDF