Biochim Biophys Acta Gen Subj
March 2023
Anserine and carnosine represent histidine-containing dipeptides that exert a pluripotent protective effect on human physiology. Anserine is known to protect against oxidative stress in diabetes and cardiovascular diseases. Human carnosinases (CN1 and CN2) are dipeptidases involved in the homeostasis of carnosine.
View Article and Find Full Text PDFCarnosine, a histidine containing dipeptide, exerts beneficial effects by scavenging reactive carbonyl compounds (RCCs) that are implicated in pathogenesis of diabetes. However, the reduced carnosine levels may aggravate the severity of diabetes. The precise quantification of carnosine levels may serve as an indicator of pathophysiological state of diabetes.
View Article and Find Full Text PDFSerine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS), which catalyze the last two steps of cysteine biosynthesis, interact and form the cysteine regulatory complex (CRC). The current model of Salmonella typhimurium predicts that CRC is composed of one [SAT] unit and two molecules of [OASS]. However, it is not clear why [SAT] cannot engage all of its six high-affinity binding sites.
View Article and Find Full Text PDFSerine acetyltransferase (SAT) catalyzes the limiting reaction in plant and microbial biosynthesis of cysteine. In addition to its enzymatic function, SAT forms a macromolecular complex with O-acetylserine sulfhydrylase. Formation of the cysteine regulatory complex (CRC) is a critical biochemical control feature in plant sulfur metabolism.
View Article and Find Full Text PDFFatty acids play critical role in the survival and virulence of Mycobacterium tuberculosis (Mtb). Activation of fatty acids by acyl-CoA synthetases (Fad) into fatty acyl-CoA is the first and one of the crucial steps in fatty acid metabolism. Mtb possesses 36 fatty acyl-CoA synthetases, unlike Escherichia coli, which has single enzyme.
View Article and Find Full Text PDFPhoP, the response regulator of the PhoP/PhoQ system, regulates Mg(2+) homeostasis in Salmonella typhimurium. Dimerization of PhoP on the DNA is necessary for its regulatory function, and PhoP regulates the expression of genes in a phosphorylation-dependent manner. Higher PhoP concentrations, however, can activate PhoP and substitute for phosphorylation-dependent gene regulation.
View Article and Find Full Text PDFBackground: Methionine aminopeptidase (MetAP) is a ubiquitous enzyme in both prokaryotes and eukaryotes, which catalyzes co-translational removal of N-terminal methionine from elongating polypeptide chains during protein synthesis. It specifically removes the terminal methionine in all organisms, if the penultimate residue is non-bulky and uncharged. The MetAP action for exclusion of N-terminal methionine is mandatory in 50-70% of nascent proteins.
View Article and Find Full Text PDFBackground: The importance of understanding the detailed mechanism of cysteine biosynthesis in bacteria is underscored by the fact that cysteine is the only sulfur donor for all cellular components containing reduced sulfur. O-acetylserine sulfhydrylase (OASS) catalyzes this crucial last step in the cysteine biosynthesis and has been recognized as an important gene for the survival and virulence of pathogenic bacteria. Structural and kinetic studies have contributed to the understanding of mechanistic aspects of OASS, but details of ligand recognition features of OASS are not available.
View Article and Find Full Text PDFDug1p is a recently identified novel dipeptidase and plays an important role in glutathione (GSH) degradation. To understand the mechanism of its substrate recognition and specificity towards Cys-Gly dipeptides, we characterized the solution properties of Dug1p and studied the thermodynamics of Dug1p-peptide interactions. In addition, we used homology modeling and ligand docking approaches to get structural insights into Dug1p-peptide interaction.
View Article and Find Full Text PDFMacromolecular assemblies play critical roles in regulating cellular functions. The cysteine synthase complex (CSC), which is formed by association of serine O-acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS), acts as a sensor and modulator of thiol metabolism by responding to changes in nutrient conditions. Here we examine the oligomerization and energetics of formation of the soybean CSC.
View Article and Find Full Text PDFTyrosine ammonia lyase (TAL) catalyzes the conversion of L-tyrosine to p-coumaric acid using a 3,5-dihydro-5-methylidene-4H-imidazole-4-one (MIO) prosthetic group. In bacteria, TAL is used for production of the photoactive yellow protein chromophore and for caffeic acid biosynthesis in certain actinomycetes. Here we biochemically examine wild-type and mutant forms of TAL from Rhodobacter sphaeroides (RsTAL).
View Article and Find Full Text PDFGlutathione is essential for maintaining the intracellular redox environment and is synthesized from gamma-glutamylcysteine, glycine, and ATP by glutathione synthetase (GS). To examine the reaction mechanism of a eukaryotic GS, 24 Arabidopsis thaliana GS (AtGS) mutants were kinetically characterized. Within the gamma-glutamylcysteine/glutathione-binding site, the S153A and S155A mutants displayed less than 4-fold changes in kinetic parameters with mutations of Glu-220 (E220A/E220Q), Gln-226 (Q226A/Q226N), and Arg-274 (R274A/R274K) at the distal end of the binding site resulting in 24-180-fold increases in the K(m) values for gamma-glutamylcysteine.
View Article and Find Full Text PDFCysteine biosynthesis in plants is partly regulated by the physical association of O-acetylserine sulfhydrylase (OASS) and serine acetyltransferase (SAT). Interaction of OASS and SAT requires only the 10 C-terminal residues of SAT. Here we analyze the thermodynamics of formation of a complex of Arabidopsis thaliana OASS (AtOASS) and the C-terminal ligand of AtSAT (C10 peptide) as a function of temperature and salt concentration using fluorescence spectroscopy and isothermal titration calorimetry (ITC).
View Article and Find Full Text PDFIn plants, association of O-acetylserine sulfhydrylase (OASS) and Ser acetyltransferase (SAT) into the Cys synthase complex plays a regulatory role in sulfur assimilation and Cys biosynthesis. We determined the crystal structure of Arabidopsis thaliana OASS (At-OASS) bound with a peptide corresponding to the C-terminal 10 residues of Arabidopsis SAT (C10 peptide) at 2.9-A resolution.
View Article and Find Full Text PDFWe have examined the single-stranded DNA (ssDNA) binding properties of the Saccharomyces cerevisiae replication protein A (scRPA) using fluorescence titrations, isothermal titration calorimetry, and sedimentation equilibrium to determine whether scRPA can bind to ssDNA in multiple binding modes. We measured the occluded site size for scRPA binding poly(dT), as well as the stoichiometry, equilibrium binding constants, and binding enthalpy of scRPA-(dT)L complexes as a function of the oligodeoxynucleotide length, L. Sedimentation equilibrium studies show that scRPA is a stable heterotrimer over the range of [NaCl] examined (0.
View Article and Find Full Text PDFExpert Rev Mol Med
January 2004
Src homology 2 (SH2) domains are protein modules (of approximately 100 amino acids) found in many proteins involved in tyrosine kinase signalling cascades. Their function is to bind tyrosine-phosphorylated sequences in specific protein targets. Binding of an SH2 domain to its cognate tyrosine-phosphorylated target links receptor activation to downstream signalling, both to the nucleus to regulate gene expression and throughout the cytoplasm of the cell.
View Article and Find Full Text PDFConformational flexibility is important for protein function. However, information on the range of conformations accessible to macromolecules in the unbound state is often difficult to obtain. By using the model system of the tandem Src homology 2 domain (i.
View Article and Find Full Text PDF