In the context of escalating electronic waste (e-waste) generated by the rapid evolution of electronic devices, particularly smartphones/mobiles, the imperative for effective e-waste management to mitigate adverse environmental and health consequences has become increasingly apparent. Herein, novel mobile phone-based triboelectric nanogenerators (M-TENGs) are fabricated from discarded smartphone displays of eight different brands (B1-B8) for harvesting electrical energy. Analytical characterization techniques such as SEM and EDS are employed for morphological investigation.
View Article and Find Full Text PDFReducing the effect of exposure to radiation in places such as radiation labs, nuclear reactors, radiotherapy facilities, industries involving radiation, etc., is essential for the health of radiation workers. In such cases materials having flexibility added with high attenuation coefficient of radiation is required for manufacturing wearables.
View Article and Find Full Text PDFTriboelectric nanogenerators (TENGs) have emerged as a promising alternative for powering small-scale electronics without relying on traditional power sources, and play an important role in the development of the internet of things (IoTs). Herein, a low-cost, flexible polyvinyl alcohol (PVA)-based TENG (PVA-TENG) is reported to harvest low-frequency mechanical vibrations and convert them into electricity. PVA thin film is prepared by a simple solution casting technique and utilized to serve as the tribopositive material, polypropylene film as tribonegative, and aluminum foil as electrodes of the device.
View Article and Find Full Text PDF