Because of the wide use of Fingolimod for the treatment of multiple sclerosis (MS) and its cardiovascular side effects such as bradycardia, second-generation sphingosine 1-phosphate receptor 1 (S1P1) agonist drugs for MS have been developed and approved by FDA. The issue of bradycardia is still present with the new drugs, however, which necessitates further exploration of S1P1 agonists with improved safety profiles for next-generation MS drugs. Herein, we report a tetrahydroisoquinoline or a benzo[]azepine core-based S1P1 agonists such as and after systematic examination of hydrophilic groups and cores.
View Article and Find Full Text PDF[Erratum to: BMB Reports 2022; 55(3): 136-141, PMID: 34488927, PMCID: PMC8972135] The BMB Reports would like to correct in BMB Rep. 55(3):136-141, titled "Human umbilical cord mesenchymal stem cell-derived mitochondria (PN-101) attenuate LPS-induced inflammatory responses by inhibiting NFκB signaling pathway". This research was supported by NRF-2016R1A2B4007640 grant (to C-H Kim).
View Article and Find Full Text PDFInflammation is one of the body's natural responses to injury and illness as part of the healing process. However, persistent inflammation can lead to chronic inflammatory diseases and multi-organ failure. Altered mitochondrial function has been implicated in several acute and chronic inflammatory diseases by inducing an abnormal inflammatory response.
View Article and Find Full Text PDFThe tau protein is a highly soluble and natively unfolded protein. Under pathological conditions, tau undergoes multiple post-translational modifications (PTMs) and conformational changes to form insoluble filaments, which are the proteinaceous signatures of tauopathies. To dissect the crosstalk among tau PTMs during the aggregation process, we phosphorylated and ubiquitylated recombinant tau using GSK3β and CHIP, respectively.
View Article and Find Full Text PDFThe pathogenesis of several neurodegenerative diseases such as Alzheimer's or Huntington's disease has been associated with metabolic dysfunctions caused by imbalances in the brain and cerebral spinal fluid levels of neuroactive metabolites. Kynurenine monooxygenase (KMO) is considered an ideal therapeutic target for the regulation of neuroactive tryptophan metabolites. Despite significant efforts, the known KMO inhibitors lack blood-brain barrier (BBB) permeability and upon the mimicking of the substrate binding mode, are subject to produce reactive oxygen species as a side reaction.
View Article and Find Full Text PDFThe 26S proteasome, a self-compartmentalized protease complex, plays a crucial role in protein quality control. Multiple levels of regulatory systems modulate proteasomal activity for substrate hydrolysis. However, the destruction mechanism of mammalian proteasomes is poorly understood.
View Article and Find Full Text PDFThis paper presents a new surface modification strategy to develop a poly(ethylene terephthalate) (PET)-based membrane having a hydrophilic surface, high nutrient ion permeability, sufficient mechanical strength, and organic fouling resistance, using an anthracene (ANT)-attached polyethylene glycol (PEG) surface modification agent (SMA) synthesized in this work. During the modification process, the ANT parts of the SMAs poke through and anchor to the surface of a commercial PET woven fabric via physical interactions and mechanical locking. The PEG chain parts coat the surface in the brush and arch forms, which generates a hydration layer on the fabric surface.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative disorder characterized by abnormal movement, including slowed movements, shuffling gait, lack of balance, and tremor. Oxidative stress has been shown to play a decisive role in dopaminergic neuronal cell death in PD. The nuclear factor E2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) signaling pathway provides the main defense system against oxidative stress by inducing the expression of antioxidant enzyme genes.
View Article and Find Full Text PDFDevelopment of highly effective, safe, and fast-acting anti-depressants is urgently required for the treatment of major depressive disorder. It has been suggested that targeting 5-HT and 5-HT in addition to inhibition of serotonin reuptake may be beneficial in generating anti-depressant agents with better pharmacology and less adverse effects. We have developed phthalazinone-based compounds that potently bind to 5-HT, 5-HT, and the serotonin transporter.
View Article and Find Full Text PDFMonophosphoryl lipid A (MPLA) species, including MPL (a trade name of GlaxoSmithKline) and GLA (a trade name of Immune Design, a subsidiary of Merck), are widely used as an adjuvant in vaccines, allergy drugs, and immunotherapy to boost the immune response. Even though MPLA is a derivative of lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria, bacterial strains producing MPLA have not been found in nature nor engineered. In fact, MPLA generation involves expensive and laborious procedures based on synthetic routes or chemical transformation of precursors isolated from Gram-negative bacteria.
View Article and Find Full Text PDFIn this study, we investigate the atomistic details of Keap1-Nrf2 inhibitors by in-depth modeling techniques, including molecular dynamics (MD) simulations, and the path-based free energy method of umbrella sampling (US). The protein-protein interaction (PPI) of Keap1-Nrf2 is implicated in several neurodegenerative diseases like cancer, diabetes, and cardiomyopathy. A better understanding of the five sub-pocket binding sites for Nrf2 (ETGE and DLG motifs) inside the Kelch domain would expedite the inhibitor design process.
View Article and Find Full Text PDFHighly effective and safe drugs for the treatment of neuropathic pain are urgently required and it was shown that blocking T-type calcium channels can be a promising strategy for drug development for neuropathic pain. We have developed pyrrolidine-based T-type calcium channel inhibitors by structural hybridization and subsequent assessment of in vitro activities against Ca3.1 and Ca3.
View Article and Find Full Text PDFThe treatment of neuropathic pain is one of the urgent unmet medical needs and T-type calcium channels are promising therapeutic targets for neuropathic pain. Several potent T-type channel inhibitors showed promising in vivo efficacy in neuropathic pain animal models and are being investigated in clinical trials. Herein we report development of novel pyrrolidine-based T-type calcium channel inhibitors by pharmacophore mapping and structural hybridisation followed by evaluation of their Ca3.
View Article and Find Full Text PDFSH2 domain-containing inositol 5'-phosphatase 2 (SHIP2) is a lipid phosphatase that produce phosphatidylinositol 3,4-bisphosphate (PI(3,4)P) from phosphatidylinositol 3,4,5-triphosphate (PI(3,4,5)P), and is involved in many diseases such as neurodegenerative diseases. A recent report demonstrating that SHIP2 inhibition decreased tau hyperphosphorylation induced by amyloid β and rescued memory impairment in a transgenic Alzheimer's disease mouse model indicates SHIP2 can be a promising therapeutic target for Alzheimer's disease. In the present study, we have developed novel, potent SHIP2 inhibitors by extensive structural elaboration of crizotinib discovered from a high-throughput screening.
View Article and Find Full Text PDFOverexpression of GRP78 in a variety of cancers such as glioblastoma, leukemia, lung, prostate, breast, gastric, and colon makes it a prime target for anticancer drug development. Present study reports GRP78-based design of novel anticancer agents using in-silico methods. As a first step toward the work, the interactions between GRP78 and 15 known ligands were modeled by docking simulation.
View Article and Find Full Text PDFOils and fatty acids are important renewable resources provided by nature. Therefore, biotransformation of renewable oils and fatty acids into industrially relevant C9 chemicals was investigated in this study. Olive oil, soybean oil, yeast derived oil, and microalgae fatty acid methyl esters were converted into n-nonanoic acid, 9-hydroxynonanoic acid, and 1,9-nonanedioic acid by a lipase and a recombinant Escherichia coli expressing oleate hydratase, long chain secondary alcohol dehydrogenase, Baeyer-Villiger monooxygenase, long chain primary alcohol dehydrogenase, and aldehyde dehydrogenase.
View Article and Find Full Text PDFRegioselective C4-, C5-, and di-alkenylations of pyrazoles were achieved. An electrophilic Pd catalyst generated by trifluoroacetic acid (TFA) and 4,5-diazafluoren-9-one (DAF) leads to C4-alkenylation, whereas KOAc and mono-protected amino acid (MPAA) ligand Ac-Val-OH give C5-alkenylation. A combination of palladium acetate, silver carbonate, and pivalic acid affords dialkenylation products.
View Article and Find Full Text PDFRecovery of mitochondrial dysfunction has gained increasing attention as an alternative therapeutic strategy for Alzheimer's disease (AD). Recent studies suggested that the 18Â kDa mitochondrial translocator protein (TSPO) has the potential to serve as a drug target for the treatment of AD. In this study, we generated a structure-based pharmacophore model and virtually screened a commercial library, identifying SVH07 as a virtual hit, which contained a tricyclic core structure, thieno[2',3':4,5]pyrrolo[1,2-d][1,2,4]triazine group.
View Article and Find Full Text PDFIntroduction: The aim of this study was to assess the antifungal efficacy of a synthetic human beta-defensin-3-C15 peptide (HBD3-C15) in Candida albicans-infected human root dentin.
Methods: Standardized root dentin blocks were prepared (6-mm thick, 0.7-mm-wide canal) from single-rooted human permanent premolars and infected with C.
Cyclophilin D (CypD) is a mitochondria-specific cyclophilin that is known to play a pivotal role in the formation of the mitochondrial permeability transition pore (mPTP).The formation and opening of the mPTP disrupt mitochondrial homeostasis, cause mitochondrial dysfunction and eventually lead to cell death. Several recent studies have found that CypD promotes the formation of the mPTP upon binding to β amyloid (Aβ) peptides inside brain mitochondria, suggesting that neuronal CypD has a potential to be a promising therapeutic target for Alzheimer's disease (AD).
View Article and Find Full Text PDFPresent work aimed to introduce non-peptidic ABAD loop D (L ) hot spot mimetics as ABAD-Aβ inhibitors. A full-length atomistic model of ABAD-Aβ complex was built as a scaffold to launch the lead design and its topology later verified by cross-checking the computational mutagenesis results with that of in vitro data. Thereafter, the interactions of prime Aβ-binding L residues-Tyr101, Thr108, and Thr110-were translated into specific pharmacophore features and this hypothesis subsequently used as a virtual screen query.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2017
Stauprimide is a staurosporine analog that promotes embryonic stem cell (ESC) differentiation by inhibiting nuclear localization of the MYC transcription factor NME2, which in turn results in down-regulation of MYC transcription. Given the critical role the oncogene MYC plays in tumor initiation and maintenance, we explored the potential of stauprimide as an anticancer agent. Here we report that stauprimide suppresses MYC transcription in cancer cell lines derived from distinct tissues.
View Article and Find Full Text PDF