Low-level laser therapy (LLLT) has been promoted for its beneficial effects on tissue healing and pain relief. As during laser treatment it is possible to irradiate only a small area of the surface body or wound and, correspondingly, of a very small volume of the circulating blood, it is necessary to explain how its photomodification can lead to a wide spectrum of therapeutic effects. To establish the experimental model for indirect irradiation, irradiation with 635 nm was performed on immortalized human gingival fibroblasts (IGFs) in the presence of Porphyromonas gingivalis lipopolysaccharides (LPS).
View Article and Find Full Text PDFObjective: The purpose of this study was to evaluate the relationship of 625, 525, and 425 nm wavelengths, providing average power output and effects on three common pathogenic bacteria.
Background Data: Ultraviolet (UV) light kills bacteria, but the bactericidal effects of UV may not be unique, as 425 nm produces a similar effect. The bactericidal effects of light-emitting diode (LED) wavelengths such as 625 and 525 nm have not been described.
Heat shock protein-27 (HSP27) is a member of the small HSP family which has been linked to the nuclear factor-kappa B (NF-κB) signaling pathway regulating inflammatory responses. Clinical reports have suggested that low-level light therapy/laser irradiation (LLLT) could be an effective alternative treatment to relieve inflammation during bacterial infection associated with periodontal disease. However, it remains unclear how light irradiation can modulate the NF-κB signaling pathway.
View Article and Find Full Text PDFObjective: The aim of this study was to examine the reactive oxygen species (ROS) that are dissipated by 635 nm irradiation, and the effect of 635 nm irradiation on ROS scavenging system.
Background Data: Intracellular ROS are produced in the form of superoxide anion by either nicotinamide adenine dinucleotide phosphate (NADPH) oxidase or xanthine oxidase in response to a number of stimuli. Low-level light irradiation decreases the intracellular ROS level and has been used in clinical situations for reducing the level of oxidative stress.
Hyperglycemia occurs in patients with poorly controlled diabetes mellitus and contributes to bone resorption and increased susceptibility to bacterial infections. Hyperglycemia can incite low-grade inflammation that can contribute to the resorption of bone, especially the periodontal bone. The increased susceptibility to periodontal infections can contribute to bone resorption through the activation of osteoclasts.
View Article and Find Full Text PDFWe controlled the fluorescence resonance energy transfer (FRET) between ZnO nanoparticles and rhodamine B (RB) within multilayered thin films prepared by the layer-by-layer (LbL) assembling method. Positively charged ZnO nanoparticles and RB-labeled poly(allyamine hydrochloride) (RB-PAH) were accurately incorporated into LbL assemblies of polyelectrolytes. The distance between ZnO nanoparticles and RB-PAH was adjusted by varying the number of layers of pure polyelectrolytes, leading to the controlled FRET from ZnO nanoparticles to RB-PAH.
View Article and Find Full Text PDF