Publications by authors named "Sang-Jin Suh"

Pseudomonas aeruginosa secretes several endopeptidases, including elastase, alkaline proteinase (Apr), a lysine-specific endopeptidase (LysC), and an aminopeptidase (PaAP), all of which are important virulence factors. Activation of the endopeptidases requires removal of an inhibitory N-terminal propeptide. Activation of pro-PaAP, in contrast, requires C-terminal processing.

View Article and Find Full Text PDF

We developed a genetic approach to efficiently add an affinity tag to every copy of protein IX (pIX) of M13 filamentous bacteriophage in a population. Affinity-tagged phages can be immobilized on a surface in a uniform monolayer in order to position the pIII-displayed peptides or proteins for optimal interaction with ligands. The tagging consists of two major steps.

View Article and Find Full Text PDF

An increasing pattern of fluoroquinolone resistance (FQR) among bacterial pathogens has been described worldwide. In this study, we compared the patterns of genetic mechanisms that confer FQR for and isolated from the Assiut University Hospitals in Egypt. Eighty-seven clinical and isolates were tested for mutations in , , , and genes by polymerase chain reaction (PCR) amplification and DNA sequencing.

View Article and Find Full Text PDF

When the subterranean termite Reticulitermes flavipes is fed heat-killed methicillin resistant Staphylococcus aureus (MRSA) or Pseudomonas aeruginosa, the termite produces proteins with antibacterial activity against the inducer pathogen in its hemolymph. We used a proteomic approach to characterize the alterations in protein profiles caused by the inducer bacterium in the hemolymph of the termite. Nano-liquid chromatography-tandem mass spectrometry analysis identified a total of 221 proteins and approximately 70% of these proteins could be associated with biological processes and molecular functions.

View Article and Find Full Text PDF

Pseudomonas aeruginosa causes acute and chronic human infections and is the major cause of morbidity and mortality in cystic fibrosis (CF) patients. We previously determined that the sn-glycerol-3-phosphate dehydrogenase encoded by glpD plays a larger role in P. aeruginosa physiology beyond its role in glycerol metabolism.

View Article and Find Full Text PDF

The emergence and dissemination of multidrug resistant bacterial pathogens necessitate research to find new antimicrobials against these organisms. We investigated antimicrobial production by eastern subterranean termites, Reticulitermes flavipes, against a panel of bacteria including three multidrug resistant (MDR) and four non-MDR human pathogens. We determined that the crude extract of naïve termites had a broad-spectrum activity against the non-MDR bacteria but it was ineffective against the three MDR pathogens Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus (MRSA), and Acinetobacter baumannii.

View Article and Find Full Text PDF

We developed an effective and rapid assay to detect both bio-energetic and envelope permeability (BEEP) alterations of Pseudomonas aeruginosa. The assay is based on quantification of extracellular ATP in bacterial cultures using luciferase as a reporter. To demonstrate the validity of our assay we conducted a biased screen of a transposon insertion library in P.

View Article and Find Full Text PDF

Current existing assay systems for evaluating antimicrobial activity suffer from several limitations including excess reagent consumption and inaccurate concentration gradient preparation. Recently, microfluidic systems have been developed to provide miniaturized platforms for antimicrobial susceptibility assays. However, some of current microfluidic based assays require continuous flows of reagents or elaborate preparation steps during concentration preparation.

View Article and Find Full Text PDF

Objectives: The purpose of this study was to describe a putative role for a novel soxS mutation in contributing to multiple-antibiotic resistance in canine fluoroquinolone-associated MDR (FQ-MDR) Escherichia coli. This soxS mutation was discovered in canine faecal E. coli isolates during a study investigating the effect of oral fluoroquinolone administration on faecal E.

View Article and Find Full Text PDF

We announce here the complete genome sequence of the Pseudomonas aeruginosa mucoid strain FRD1, isolated from the sputum of a cystic fibrosis patient. The complete genome of P. aeruginosa FRD1 is 6,712,339 bp.

View Article and Find Full Text PDF

Methyl-coenzyme M reductase (MCR) catalyzes the reversible reduction of methyl-coenzyme M (CH3-S-CoM) and coenzyme B (HS-CoB) to methane and heterodisulfide CoM-S-S-CoB (HDS). MCR contains the hydroporphinoid nickel complex coenzyme F430 in its active site, and the Ni center has to be in its Ni(I) valence state for the enzyme to be active. Until now, no in vitro method that fully converted the inactive MCRsilent-Ni(II) form to the active MCRred1-Ni(I) form has been described.

View Article and Find Full Text PDF

Escherichia coli respond to selective pressure of antimicrobial therapy by developing resistance through a variety of mechanisms. The purpose of this study was to characterize the genetic mechanisms of antimicrobial resistance in fecal E. coli after the routine use of 2 popular antimicrobials.

View Article and Find Full Text PDF

Potyviruses are a persistent threat to bell pepper (Capsicum annuum L.) production worldwide. Much effort has been expended to study the resistance response of pepper cultivars at whole plant levels but with only limited effort at the cellular level using protoplasts.

View Article and Find Full Text PDF

Pseudomonas aeruginosa causes chronic pulmonary infections, which can persist for decades, in patients with cystic fibrosis (CF). Current evidence suggests that the glyoxylate pathway is an important metabolic pathway for P. aeruginosa growing within the CF lung.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is the major aetiological agent of chronic pulmonary infections in patients with cystic fibrosis (CF). The metabolic pathways utilized by P. aeruginosa during these infections, which can persist for decades, are poorly understood.

View Article and Find Full Text PDF

Myxococcus xanthus, a Gram-negative soil bacterium, undergoes multicellular development when nutrients become limiting. Aggregation, which is part of the developmental process, requires the surface motility of this organism. One component of M.

View Article and Find Full Text PDF

In order to facilitate genetic study of the opportunistic bacterial pathogen Pseudomonas aeruginosa, we isolated a conditional, temperature-sensitive plasmid origin of replication. We mutagenized the popular Pseudomonas stabilizing fragment from pRO1610 in vitro using the Taq thermostable DNA polymerase in a polymerase chain reaction (PCR). Out of approximately 23,000 potential clones, 48 temperature-sensitive mutants were isolated.

View Article and Find Full Text PDF

Recent biological terrorism threats and outbreaks of microbial pathogens clearly emphasize the need for biosensors that can quickly and accurately identify infectious agents. The majority of rapid biosensors generate detectable signals when a molecular probe in the detector interacts with an analyte of interest. Analytes may be whole bacterial or fungal cells, virus particles, or specific molecules, such as chemicals or protein toxins, produced by the infectious agent.

View Article and Find Full Text PDF

Biofilms are bacterial communities residing within a polysaccharide matrix that are associated with persistence and antibiotic resistance in chronic infections. We show that the opportunistic pathogen Pseudomonas aeruginosa forms biofilms within 8 h of infection in thermally injured mice, demonstrating that biofilms contribute to bacterial colonization in acute infections as well. Using light, electron, and confocal scanning laser microscopy, P.

View Article and Find Full Text PDF

Vfr, a global regulator of Pseudomonas aeruginosa virulence factors, is a homologue of the Escherichia coli cAMP receptor protein, CRP. Vfr is 91% similar to CRP and maintains many residues important for CRP to bind cAMP, bind DNA, and interact with RNA polymerase at target promoters. While vfr can complement an E.

View Article and Find Full Text PDF

Cystic fibrosis (CF) patients are highly susceptible to chronic pulmonary disease caused by mucoid Pseudomonas aeruginosa strains that overproduce the exopolysaccharide alginate. We showed here that a mutation in zwf, encoding glucose-6-phosphate dehydrogenase (G6PDH), leads to a approximately 90% reduction in alginate production in the mucoid, CF isolate, P. aeruginosa FRD1.

View Article and Find Full Text PDF

The quorum-sensing (las and rhl) systems play critical roles in the pathogenicity of Pseudomonas aeruginosa and its synthesis of the important biosurfactants, rhamnolipids. In this work, P. aeruginosa PAO1 and its rhlI and rhlR null mutants were used to study the degradation and synthesis kinetics of the rhl system's autoinducer PAI2 (N-butanoyl-homoserine lactone).

View Article and Find Full Text PDF

The eutT gene of Salmonella enterica was cloned and overexpressed, and the function of its product was established in vivo and in vitro. The EutT protein has an oxygen-labile, metal-containing ATP:co(I)rrinoid adenosyltransferase activity associated with it. Functional redundancy between EutT and the housekeeping ATP:co(I)rrinoid adenosyltransferase CobA enzyme was demonstrated through phenotypic analyses of mutant strains.

View Article and Find Full Text PDF

To facilitate study of the opportunistic bacterial pathogen Pseudomonas aeruginosa, several genetic tools were developed. These tools include a series of cassettes carrying (a) the minimal sequence for the origin of transfer (oriT) of RP4 plasmid for introducing plasmid into P. aeruginosa via conjugation, (b) a minimal sequence for P.

View Article and Find Full Text PDF

Bacterial alginates are produced as 1-4-linked beta-D-mannuronan, followed by epimerization of some of the mannuronic acid residues to alpha-L-guluronic acid. Here we report the isolation of four different epimerization-defective point mutants of the periplasmic Pseudomonas fluorescens mannuronan C-5-epimerase AlgG. All mutations affected amino acids conserved among AlgG-epimerases and were clustered in a part of the enzyme also sharing some sequence similarity to a group of secreted epimerases previously reported in Azotobacter vinelandii.

View Article and Find Full Text PDF