Publications by authors named "Sang-Hyub Oh"

Liquid hydrocarbon mixtures such as liquefied petroleum gas and liquefied natural gas are becoming integral parts of the world's energy system. Certified reference materials (CRMs) of liquid hydrocarbon mixtures are necessary to allow assessment of the accuracy and traceability of the compositions of such materials. A piston-type constant-pressure cylinder (PCPC) comprising chambers for a pressurizing gas (helium) and liquid (hydrocarbons) separated by a piston can be used to develop accurate and traceable liquid hydrocarbon mixture CRMs.

View Article and Find Full Text PDF

We present the enhancement of luminescence of europium complex, Eu(3+)-ciprofloxacin (CIP), in the presence of silver nanoparticles (Ag NPs) for the CIP determination. The increment of the luminescence intensity of the Eu(3+)-CIP complex with Ag NPs was obtained due to the transfer of resonance energy to the fluorophores through the interaction of the excited-state fluorophores and surface plasmon electron in the metal nano surface. The luminescence intensity of Eu3+ was enhanced by complexation with CIP at 614 nm after excitation at 373 nm corresponding to the 5D0-7F2 transitions of Eu3+ ion.

View Article and Find Full Text PDF

An ECL sensor was fabricated by immobilization of a tris(2,2'-bipyridyl)ruthenium (II) complex (Ru(bpy)3(2+)) to an amine group-modified GC electrode (NH2-GC electrode). Here, the NH2-GC electrode was prepared by electrochemical reduction of a nitro group-modified GC electrode in 0.1 M KCl ethanol solution under H2 gas, which was followed by electrochemical grafting of 4-nitrophenyl diazonium salts in 0.

View Article and Find Full Text PDF

A determination method for Co(II), Fe(II) and Cr(III) ions by luminol-H2 O2 system using chelating reagents is presented. A metal ion-chelating ligand complex with a Co(II) ion and a chelating reagent like ethylenediaminetetraacetic acid (EDTA) produced highly enhanced chemiluminescence (CL) intensity as well as longer lifetime in the luminol-H2 O2 system compared to metals that exist as free ions. Whereas free Cu(II) and Pb(II) ions had a strong catalytic effect on the luminol-H2 O2 system, significantly, the complexes of Cu(II) and Pb(II) with chelating reagents lost their catalytic activity due to the chelating reagents acting as masking agents.

View Article and Find Full Text PDF

With the objective to prepare electrocatalysts with high efficiency, the Pt-Ru@PPy-MWNT catalysts were prepared by different approaches. First, the polypyrrole (PPy) as anchoring materials was coated on the surface of multi walled carbon nanotubes (MWNT) by in situ polymerization. Subsequently, Pt-Ru nanoparticles were deposited onto PPy-MWNT composite by different methods like the reduction of metal ions by gamma-irradiation and chemical reduction using formaldehyde as reducing agent assisted with stirring of magnetic bar, and assisted with microwave irradiation, and assisted with ultrasonic irradiation, in order to prepare electrocatalyst for fuel cell.

View Article and Find Full Text PDF

Tris(2,2'-bipyridyl)ruthenium (II) (Ru(bpy)2+) electrogerated chemiluminescence (ECL) sensor was fabricated by immobilization of Ru(bpy)2+ complex on conducting polymer@SiO2/Nafion composite film on surface of glassy carbon electrode. The conducting polymer@SiO2 nanocomposites were prepared by coating polyaniline (PANI), polypyrrole (PPy), and polythiophene (PTh) on the surface of the SiO2 sphere. The conducting polymer@SiO2 nanocomposite was characterized by scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and atomic force microscopy (AFM).

View Article and Find Full Text PDF

Enzyme immobilized electrode was fabricated by two methods. In one of the methods, gold-nanoparticles (Au-NPs) prepared by gamma-irradiation were loaded into the copolymer film and horseradish peroxidase (HRP) was immobilized into the Au-NPs loaded copolymer film through physical entrapment. In the other method, the Au-NPs was prepared by electrochemical reduction of Au ions on the surface of poly(Th-AP-TAA) and HRP was immobilized into the Au-NPs.

View Article and Find Full Text PDF

Three-type polymer electrodes such as poly(Th), poly(Th-AP) and poly(Th-AP-TAA) were fabricated, respectively, by electro-oxidative polymerization of thiophene (Th), mixture of Th and 2-aminophenol (AP), and mixture of Th, AP and 3-thiopheneacetic acid (TAA) on the surface of indium tin oxide (ITO) glass by cyclic voltammetry (CV). The polymer electrodes were electrodeposited by cycling the potential between -1.0 and +2.

View Article and Find Full Text PDF