Publications by authors named "Sang-Hyoun Choi"

Background: Previous study proposed a method to measure linear energy transfer (LET) at specific points using the quenching magnitude of thin film solar cells. This study was conducted to propose a more advanced method for measuring the LET distribution.

Purpose: This study focuses on evaluating the feasibility of estimating the proton LET distribution in proton therapy.

View Article and Find Full Text PDF

The shielding parameters can vary depending on the geometrical structure of the linear accelerators (LINAC), treatment techniques, and beam energies. Recently, the introduction of O-ring type linear accelerators is increasing. The objective of this study is to evaluate the shielding parameters of new type of linac using a dedicated program developed by us named ORSE (O-ring type Radiation therapy equipment Shielding Evaluation).

View Article and Find Full Text PDF

In radiotherapy, when photon energy exceeding 8 MV is utilized, photoneutrons can activate the components within the gantry of the linear accelerator (linac). At the end of the linac's lifecycle, radiation workers are tasked with its dismantling and disposal, potentially exposing them to unintentional radiation. This study aims to identify and measure the radioisotopes generated by this activation through spectroscopy, and to evaluate the effective dose rate.

View Article and Find Full Text PDF

Although research into ultrahigh dose-rate (UHDR) radiation therapy is ongoing, there is a significant lack of experimental measurements for two-dimensional (2D) dose-rate distributions. Additionally, conventional pixel-type detectors result in significant beam loss. In this study, we developed a pixel array-type detector with adjustable gaps and a data acquisition system to evaluate its effectiveness in measuring UHDR proton beams in real time.

View Article and Find Full Text PDF

Cell-based therapies have been used as promising treatments for several untreatable diseases. However, cell-based therapies have side effects such as tumorigenesis and immune responses. To overcome these side effects, therapeutic effects of exosomes have been researched as replacements for cell-based therapies.

View Article and Find Full Text PDF

In radiation therapy (RT) for skin cancer, tissue-equivalent substances called boluses are widely used to ensure the delivery of an adequate dose to the skin surface and to provide a radioprotective effect for normal tissue. The aim of this study was to develop a new type of three-dimensional (3D) bolus for RT involving body parts with irregular geometries and to evaluate its clinical feasibility. Two 3D-printed boluses were designed for two patients with squamous cell carcinoma (SCC) of their distal extremities based on computed tomography (CT) images and printed with polylactic acid (PLA).

View Article and Find Full Text PDF

Background: The machine-specific reference (msr) correction factors ( ) were introduced in International Atomic Energy Agency (IAEA) Technical Report Series 483 (TRS-483) for reference dosimetry of small fields. Several correction factor sets exist for a Leksell Gamma Knife (GK) Perfexion or Icon. Nevertheless, experiments have not rigorously validated the correction factors from different studies.

View Article and Find Full Text PDF

Pre-treatment patient-specific quality assurance (QA) is critical to prevent radiation accidents. The electronic portal imaging device (EPID) is a dose measurement tool with good resolution and a low volume-averaging effect. EPIbeam—an EPID-based portal dosimetry software—has been newly installed in three institutions in Korea.

View Article and Find Full Text PDF

The feasibility of proton minibeam radiation therapy (pMBRT) using a multislit collimator (MSC) and a scattering device was evaluated for clinical use at a clinical proton therapy facility. We fabricated, through Monte Carlo (MC) simulations, not only an MSC with a high peak-to-valley dose ratio (PVDR) at the entrance of the proton beam, to prevent radiation toxicity, but also a scattering device to modulate the PVDR in depth. The slit width and center-to-center distance of the diverging MSC were 2.

View Article and Find Full Text PDF

The aim of this work is to build a framework that comprehends inverse planning procedure and plan optimization algorithm tailored to a novel directional beam intensity-modulated brachytherapy (IMBT) of cervical cancer using a rotatable, single-channel radiation shield. Inverse planning is required for finding optimal beam emitting direction, source dwell position and dwell time, which begin with creating a kernel matrix for each structure based on Monte-Carlo simulated dose distribution in the rotatable shield. For efficient beam delivery and less transit dose, the number of source dwell positions and angles needs to be minimized.

View Article and Find Full Text PDF

Phosphor screens have attracted increasing global interest because they can aid the acquisition of high-quality images while simultaneously reducing exposure. However, although increasing the thickness of the phosphor screen increases exposure efficiency due to scattered light, it also leads to a broader light spread, which results in poorer resolution. Hence, in this study, we implemented a reflector using a mirror-coating technique on the surface of a phosphor screen and analyzed its characteristics in terms of luminescence intensity and resolution.

View Article and Find Full Text PDF

The patient's respiratory pattern and reproducibility are important factors affecting the accuracy of radiotherapy for lung cancer or liver cancer cases. Therefore, respiration training is required to induce respiration regularity before radiotherapy. However, the need for specialized personnel, space, and time-consuming training represent limitations.

View Article and Find Full Text PDF

Background: The aim of the present study was to verify the dosimetric accuracy of two-dimensional (2D) in vivo rectal dosimetry using an endorectal balloon (ERB) with unfoldable EBT3 films for high-dose-rate (HDR) brachytherapy for cervical cancer. The clinical applicability of the technique was discussed.

Material And Methods: ERB inflation makes the EBT3 films unrolled, whereas its deflation makes them rolled.

View Article and Find Full Text PDF

This study was conducted as part of an endeavor to improve the risk management system of radiation therapy departments in the Republic of Korea. An online survey on the status and perception of Korea's medical physicists on risk management in radiation therapy was carried out. A total of 40 domestic radiation oncology departments participated.

View Article and Find Full Text PDF

Background And Purpose: The present study aims to investigate the feasibility of two-dimensional (2D) in vivo rectal dosimetry using an endorectal balloon for the radiotherapy of prostate cancer.

Materials And Methods: The endorectal balloon was equipped with an unfoldable radiochromic film. The film was unrolled as the balloon was inflated, and rolled as it was deflated.

View Article and Find Full Text PDF

Purpose: To compare volumetric modulated arc therapy of RapidArc with robotic stereotactic body radiation therapy (SBRT) of CyberKnife in the planning and delivery of SBRT for hepatocellular carcinoma (HCC) treatment by analyzing dosimetric parameters.

Materials And Methods: Two radiation treatment plans were generated for 29 HCC patients, one using Eclipse for the RapidArc plan and the other using Multiplan for the CyberKnife plan. The prescription dose was 60 Gy in 3 fractions.

View Article and Find Full Text PDF

A Korean voxel model, named 'High-Definition Reference Korean-Man (HDRK-Man)', was constructed using high-resolution color photographic images that were obtained by serially sectioning the cadaver of a 33-year-old Korean adult male. The body height and weight, the skeletal mass and the dimensions of the individual organs and tissues were adjusted to the reference Korean data. The resulting model was then implemented into a Monte Carlo particle transport code, MCNPX, to calculate the dose conversion coefficients for the internal organs and tissues.

View Article and Find Full Text PDF