Publications by authors named "Sang-Hu Park"

Heat accumulation due to repetitive simple laser processing paths during building up a three-dimensional structure is a well-known issue that needs to be settled to reduce the excessively high residual stress and thermal deformation in a powder bed fusion (PBF) additive manufacturing process. Because of the dependency of laser path on the thermal dispersion, it is essential to analyze the heat accumulation phenomenon during laser processing. A computational fluid dynamics (CFD) analysis based on the volume of fraction method is used to optimize the laser path for minimizing the local heating up in the PBF process.

View Article and Find Full Text PDF
Article Synopsis
  • A novel auxetic structure for airless tire spokes is created using a primitive-type triply periodic minimal surface (P-TPMS) to increase stiffness when subjected to compressive forces.
  • A new rotated primitive-type auxetic structure (RPAS) is developed based on a parametric study, showing better deformation characteristics compared to traditional honeycomb spokes in airless tires.
  • Tests reveal that RPAS tires offer greater stability and shock absorption, while also being feasible for production using rubber-based additive manufacturing techniques for the tire industry.
View Article and Find Full Text PDF

We develop a novel milli-scale mixer (tilted-wings mixing unit, TWM unit) based on the design for additive manufacturing (DfAM). The proposed tilted-wings mixer has basically designed to have three separate wings that split and combine fluids in order to mix together effectively. Its structure is simple for easy fabrication: two major design parameters of angle among three wings and connecting angle between tilted-unit, which are optimized using the computational fluid dynamics (CFD) analysis.

View Article and Find Full Text PDF

A novel method was developed for fabricating nanopatterns embedded on micropillar-structured surfaces using nanowelding technology for security identification. Commonly used substrates, that is, polyethylene films, glass wafers, Si wafers, and curved surfaces, were employed and their characteristics were evaluated. Cr was deposited onto the selected substrate to strengthen the adhesion force, and an adhesive layer of ultra-thin metal was deposited on top of the Cr layer.

View Article and Find Full Text PDF

A novel concept for fabricating heterogeneous nanostructures based on different melting temperatures is developed. Au-Ag composite cross-structures are fabricated by nanowelding technologies. During the fabrication of Au-Ag composite cross-structures, Ag nanowires transform into ordered particles decorating the Au nanowire surfaces with an increase in the welding temperature because of the different melting temperatures of Au and Ag.

View Article and Find Full Text PDF

In this study, 8 in. wafer-scale flexible polarization-dependent color filters with Ag-TiO composite nanowires have been fabricated using nanoimprint and E-beam evaporation. The filters change their color via a simple rotation of the polarizer.

View Article and Find Full Text PDF

A novel method for fabricating 3D metallic nanostructures to be used in polarized color filters based on nanoimprint lithography, electron-beam evaporation, and nanowelding is proposed. The shape of the nanostructures can be controlled by adjusting the temperature for the nanowelding process. Ag nanowires deposited on polymer patterns are accumulated by the nanowelding process to build up diverse 3D nanostructures.

View Article and Find Full Text PDF

In this study, a periodic three-dimensional (3D) Ag/TiO nanocomposite architecture of nanowires was fabricated on a flexible substrate to enhance the plasmonic photocatalytic activity of the composite. Layer-by-layer nanofabrication based on nanoimprint lithography, vertical e-beam evaporation, nanotransfer, and nanowelding was applied in a new method to create different 3D Ag/TiO nanocomposite architectures. The fabricated samples were characterized by scanning electron microscopy, transmission electron microscopy, focused ion-beam imaging, X-ray photoelectron spectrometry, and UV-visible spectroscopy.

View Article and Find Full Text PDF

We designed and validated a rotary magnetorheological (MR) damper with a specified damping torque capacity, an unsaturated magnetic flux density (MFD), and a high magnetic field intensity (MFI) for unmanned vehicle suspension systems. In this study, for the rotary type MR damper to have these satisfactory performances, the roles of the sealing location and the cover case curvature of the MR damper were investigated by using the detailed 3D finite element model to reflect asymmetrical shapes and sealing components. The current study also optimized the damper cover case curvature based on the MFD, the MFI, and the weight of the MR damper components.

View Article and Find Full Text PDF

We evaluated the microscale frictional response of human articular cartilage in different osteoarthritis stages using an atomic force microscope. Four human femoral heads (60-80 years old) with different osteoarthritis stages were explanted, and two cylindrical cartilage samples were sectioned from each femoral head. The microscale frictional coefficient mu of human cartilage in phosphate-buffered saline increased with increasing osteoarthritis stages, resulting in mu = 0.

View Article and Find Full Text PDF

Two-dimensional (2-D) and three-dimensional (3-D) diamond-like carbon (DLC) stamps for ultraviolet nanoimprint lithography were fabricated with two methods: namely, a DLC coating process, followed by focused ion beam lithography; and two-photon polymerization patterning, followed by nanoscale-thick DLC coating. We used focused ion beam lithography to fabricate 70 nm deep lines with a width of 100 nm, as well as 70 nm deep lines with a width of 150 nm, on 100 nm thick DLC layers coated on quartz substrates. We also used two-photon polymerization patterning and a DLC coating process to successfully fabricate 200 nm wide lines, as well as 3-D rings with a diameter of 1.

View Article and Find Full Text PDF