Biochem Mol Biol Educ
March 2018
Traditional developmental biology laboratory classes have utilized a number of different model organisms to allow students to be exposed to diverse biological phenomena in developing organisms. This traditional approach has mainly focused on the diverse morphological and anatomical descriptions of the developing organisms. However, modern developmental biology is focusing more on conserved genetic networks which are responsible for generating conserved body patterns in developing organisms.
View Article and Find Full Text PDFCell polarity genes have important functions in photoreceptor morphogenesis. Based on recent discovery of stabilized microtubule cytoskeleton in developing photoreceptors and its role in photoreceptor cell polarity, microtubule associated proteins might have important roles in controlling cell polarity proteins' localizations in developing photoreceptors. Here, Tau, a microtubule associated protein, was analyzed to find its potential role in photoreceptor cell polarity.
View Article and Find Full Text PDFBackground: Crumbs (Crb), a cell polarity gene, has been shown to provide a positional cue for the apical membrane domain and adherens junction during Drosophila photoreceptor morphogenesis. It has recently been found that stable microtubules in developing Drosophila photoreceptors were linked to Crb localization. Coordinated interactions between microtubule and actin cytoskeletons are involved in many polarized cellular processes.
View Article and Find Full Text PDFBackground: Crumbs (Crb), a cell polarity gene, has been shown to provide a positional cue for the extension of the apical membrane domain, adherens junction (AJ), and rhabdomere along the growing proximal-distal axis during Drosophila photoreceptor morphogenesis. In developing Drosophila photoreceptors, a stabilized microtubule structure was discovered and its presence was linked to polarity protein localization. It was therefore hypothesized that the microtubules may provide trafficking routes for the polarity proteins during photoreceptor morphogenesis.
View Article and Find Full Text PDFBackground: Cell polarity genes including Crumbs (Crb) and Par complexes are essential for controlling photoreceptor morphogenesis. Among the Crb and Par complexes, Bazooka (Baz, Par-3 homolog) acts as a nodal component for other cell polarity proteins. Therefore, finding other genes interacting with Baz will help us to understand the cell polarity genes' role in photoreceptor morphogenesis.
View Article and Find Full Text PDFPhotoreceptor morphogenesis requires specific and coordinated localization of junctional markers at different stages of development. Here, we provide evidence that Drosophila Klp64D, a homolog of Kif3A motor subunit of the heterotrimeric Kinesin II complex, is essential for viability of developing photoreceptors and localization of junctional proteins. Genetic analysis of mutant clones shows that absence of Klp64D protein in early larval eye disc does not affect initial differentiation, but results in abnormal nuclear position in differentiating photoreceptors.
View Article and Find Full Text PDFBackground: Mutations in spastin are the most common cause of hereditary spastin paraplegia, a neurodegenerative disease. In this study, the role of spastin was examined in Drosophila photoreceptor development.
Methodology/principal Findings: The spastin mutation in developing pupal eyes causes a mild mislocalization of the apical membrane domain at the distal section, but the apical domain was dramatically reduced at the proximal section of the developing pupal eye.
Spectrins are major proteins in the cytoskeletal network of most cells. In Drosophila, beta(Heavy)-Spectrin encoded by the karst gene functions together with Crb during photoreceptor morphogenesis. However, the roles of two other Spectrins (alpha- and beta-Spectrins) in developing photoreceptor cells have not been studied.
View Article and Find Full Text PDFNodular fasciitis (NF) is a benign, proliferative lesion of myofibroblasts. The most common site of the lesion is in the upper extremities or trunk. NF in the head and neck is next in frequency and is the most common site in infants and children.
View Article and Find Full Text PDFApical basal cell polarity is a fundamental feature of all epithelial cells. Identification of the genes involved in the polarization of epithelial cells has begun to reveal the mechanisms underlying the establishment and maintenance of cell polarity. An important issue is to understand the molecular basis for localization of cell polarity proteins in the context of the developing organism.
View Article and Find Full Text PDFEstablishment and maintenance of apical basal cell polarity are essential for epithelial morphogenesis and have been studied extensively using the Drosophila eye as a model system. Bazooka (Baz), a component of the Par-6 complex, plays important roles in cell polarity in diverse cell types including the photoreceptor cells. In ovarian follicle cells, localization of Baz at the apical region is regulated by Par-1 protein kinase.
View Article and Find Full Text PDFThe formation and maintenance of cell polarity is essential for epithelial morphogenesis. Dpatj (Drosophila homolog of mammalian Patj) is a multi-PDZ domain protein that localizes to the apical cell membrane and forms a protein complex with cell polarity proteins, Crumbs (Crb) and Stardust (Sdt). Whereas Crb and Sdt are known to be required for the organization of adherens junctions (AJs) and rhabdomeres in differentiating photoreceptors, the in vivo function of Dpatj as a member of the Crb complex in developing eye has been unclear due to the lack of loss-of-function mutations specifically affecting the dpatj gene.
View Article and Find Full Text PDFJ Biochem Mol Biol
November 2005
Transcription termination of the human mitochondrial genome requires specific binding to termination factor mTERF. In this study, mTERF was produced in E. coli and purified by two-step chromatography.
View Article and Find Full Text PDFApicobasal cell polarity is crucial for morphogenesis of photoreceptor rhabdomeres and adherens junctions (AJs) in the Drosophila eye. Crumbs (Crb) is specifically localized to the apical membrane of photoreceptors, providing a positional cue for the organization of rhabdomeres and AJs. We show that the Crb complex consisting of Crb, Stardust (Sdt) and Discs-lost (Dlt) colocalizes with another protein complex containing Par-6 and atypical protein kinase C (aPKC) in the rhabdomere stalk of photoreceptors.
View Article and Find Full Text PDFDrosophila Crumbs (Crb) is required for apical-basal polarity and is an apical determinant in embryonic epithelia. Here, we describe properties of Crb that control the position and integrity of the photoreceptor adherens junction and photosensitive organ, or rhabdomere. In contrast to normal photoreceptor adherens junctions and rhabdomeres, which span the depth of the retina, adherens junctions and rhabdomeres of Crb-deficient photoreceptors initially accumulate at the top of the retina and fail to maintain their integrity as they stretch to the retinal floor.
View Article and Find Full Text PDF