Publications by authors named "Sang-Cheol Seok"

Background: Given sleep's crucial role in health and cognition, numerous sleep-based brain interventions are being developed, aiming to enhance cognitive function, particularly memory consolidation, by improving sleep. Research has shown that Transcranial Alternating Current Stimulation (tACS) during sleep can enhance memory performance, especially when used in a closed-loop (cl-tACS) mode that coordinates with sleep slow oscillations (SOs, 0.5-1.

View Article and Find Full Text PDF

Next-generation sequencing has led to an explosion of genetic findings for many rare diseases. However, most of the variants identified are very rare and were also identified in small pedigrees, which creates challenges in terms of penetrance estimation and translation into genetic counselling in the setting of cascade testing. We use simulations to show that for a rare (dominant) disorder where a variant is identified in a small number of small pedigrees, the penetrance estimate can both have large uncertainty and be drastically inflated, due to underlying ascertainment bias.

View Article and Find Full Text PDF

The major determinant of disease severity in Duchenne muscular dystrophy (DMD) or milder Becker muscular dystrophy (BMD) is whether the dystrophin gene (DMD) mutation truncates the mRNA reading frame or allows expression of a partially functional protein. However, even in the complete absence of dystrophin, variability in disease severity is observed, and candidate gene studies have implicated several genes as modifiers. Here we present the largest genome-wide search to date for loci influencing severity in N = 419 DMD patients.

View Article and Find Full Text PDF

Sleep slow oscillations (SOs, 0.5-1.5 Hz) are thought to organize activity across cortical and subcortical structures, leading to selective synaptic changes that mediate consolidation of recent memories.

View Article and Find Full Text PDF

In earlier work, we have developed and evaluated an alternative approach to the analysis of GWAS data, based on a statistic called the PPLD. More recently, motivated by a GWAS for genetic modifiers of the X-linked Mendelian disorder Duchenne Muscular Dystrophy (DMD), we adapted the PPLD for application to time-to-event (TE) phenotypes. Because DMD itself is relatively rare, this is a setting in which the very large sample sizes generally assembled for GWAS are simply not attainable.

View Article and Find Full Text PDF

In linear regression, a residual measures how far a subject's observation is from expectation; in survival analysis, a subject's Martingale or deviance residual is sometimes interpreted similarly. Here we consider ways in which a linear regression-like interpretation is not appropriate for Martingale and deviance residuals, and we develop a novel time-to-event residual which does have a linear regression-like interpretation. We illustrate the utility of this new residual via simulation of a time-to-event genome-wide association study, motivated by a real study seeking genetic modifiers of Duchenne Muscular Dystrophy.

View Article and Find Full Text PDF

Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used to analyze host-microorganism relationships, as well as most of the ecological theories proposed to explain coevolution of hosts and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of differences between hosts.

View Article and Find Full Text PDF

Cell-to-cell variations in protein abundance in clonal cell populations are ubiquitous in living systems. Because protein composition determines responses in individual cells, it stands to reason that the variations themselves are subject to selective pressures. However, the functional role of these cell-to-cell differences is not well understood.

View Article and Find Full Text PDF

Robustness and sensitivity of responses generated by cell signaling networks has been associated with survival and evolvability of organisms. However, existing methods analyzing robustness and sensitivity of signaling networks ignore the experimentally observed cell-to-cell variations of protein abundances and cell functions or contain ad hoc assumptions. We propose and apply a data-driven maximum entropy based method to quantify robustness and sensitivity of Escherichia coli (E.

View Article and Find Full Text PDF

The inositol-phosphate messenger inositol(1,3,4,5)tetrakisphosphate (IP4) is essential for thymocyte positive selection by regulating plasma-membrane association of the protein tyrosine kinase Itk downstream of the T cell receptor (TCR). IP4 can act as a soluble analog of the phosphoinositide 3-kinase (PI3K) membrane lipid product phosphatidylinositol(3,4,5)trisphosphate (PIP3). PIP3 recruits signaling proteins such as Itk to cellular membranes by binding to PH and other domains.

View Article and Find Full Text PDF

This paper describes the software package KELVIN, which supports the PPL (posterior probability of linkage) framework for the measurement of statistical evidence in human (or more generally, diploid) genetic studies. In terms of scope, KELVIN supports two-point (trait-marker or marker-marker) and multipoint linkage analysis, based on either sex-averaged or sex-specific genetic maps, with an option to allow for imprinting; trait-marker linkage disequilibrium (LD), or association analysis, in case-control data, trio data, and/or multiplex family data, with options for joint linkage and trait-marker LD or conditional LD given linkage; dichotomous trait, quantitative trait and quantitative trait threshold models; and certain types of gene-gene interactions and covariate effects. Features and data (pedigree) structures can be freely mixed and matched within analyses.

View Article and Find Full Text PDF

Many statistical methods in biology utilize numerical integration in order to deal with moderately high-dimensional parameter spaces without closed form integrals. One such method is the PPL, a class of models for mapping and modeling genes for complex human disorders. While the most common approach to numerical integration in statistics is MCMC, this is not a good option for the PPL for a variety of reasons, leading us to develop an alternative integration method for this application.

View Article and Find Full Text PDF

Identifying functional modules is believed to reveal most cellular processes. There have been many computational approaches to investigate the underlying biological structures (Bader and Hogue, 2003; Dhillon et al., 2005; Krogan et al.

View Article and Find Full Text PDF