Enhancing adult neurogenesis in the brain has been suggested as a potential therapeutic strategy for AD. We developed a screening platform, ATRIVIEW, for molecules that activate neuronal differentiation of adult mouse NSCs. The most potent hit from an FDA-approved drug library was SNR1611 (trametinib), a selective MEK1/2 inhibitor.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a multifactorial disorder that affects cognitive functioning, behavior, and neuronal properties. The neuronal dysfunction is primarily responsible for cognitive decline in AD patients, with many causal factors including plaque accumulation of Aβ42. Neural hyperactivity induced by Aβ42 deposition causes abnormalities in neural networks, leading to alterations in synaptic activity and interneuron dysfunction.
View Article and Find Full Text PDFAlzheimer's Disease (AD) is a progressive neurodegenerative disorder, which is characterized by cognitive deficit due to synaptic loss and neuronal death. Extracellular amyloid β plaques are one of the pathological hallmarks of AD. The autophagic lysosomal pathway is the essential mechanism to maintain cellular homeostasis by driving clearance of protein aggregates and is dysfunctional in AD.
View Article and Find Full Text PDFThe deterioration of neurons in Alzheimer's disease (AD) arises from genetic, immunologic, and cellular factors inside the cortex. The traditional consensus of the amyloid-beta (Aβ) paradigm as a singular cause of AD has been under revision, with the accumulation of exploding neurobiological evidence. Among the multifaceted casualties of AD, the involvement of glia gains significance for its dynamic contribution to neurons, either in a neuroprotective or neurotoxic fashion.
View Article and Find Full Text PDFCurcumin is a major diarylheptanoid component of with traditional usage for anxiety and depression. It has been known for the anti-inflammatory, antistress, and neurotropic effects. Here we examined curcumin effect in neural plasticity and cell viability.
View Article and Find Full Text PDFESP-102, an extract from Angelica gigas, Saururus chinensis, and Schisandra chinensis, has been used as herbal medicine and dietary supplement in Korea. Despite the numerous bioactivities in vitro and in vivo studies, its effects on neuronal networks remain elusive. To address the neuronal effect, we examined synaptic plasticity in organotypic hippocampal slice culture with multielectrode array.
View Article and Find Full Text PDFBackground: Rosmarinic acid (RA) is a polyphenolic ester of caffeic acid and is commonly found in the Nepetoideae subfamily of flowering mint plants. Because RA has previously exhibited antioxidant, neuroprotective, and antidepressant-like effects, we evaluated its influences on cellular functions in neuronal cultures.
Objective: To elucidate possible mechanisms of RA, we investigated the influences of acute RA administration on long-term potentiation (LTP), plasticity-related protein expression, and scopolamine-induced cell death in organotypic hippocampal slice cultures.
P2X receptors are involved in amplification of inflammatory responses in peripheral nociceptive fibers and in mediating pain-related signals to the CNS. Control of P2X activation has significant importance in managing unwanted hypersensitive neuron responses. To overcome the limitations of chemical ligand treatment, optical stimulation methods of optogenetics and photoswitching achieve efficient control of P2X activation while allowing specificity at the target site and convenient stimulation by light illumination.
View Article and Find Full Text PDFMediators Inflamm
December 2016
Chronic pain originating from neuronal damage remains an incurable symptom debilitating patients. Proposed molecular modalities in neuropathic pain include ion channel expressions, immune reactions, and inflammatory substrate diffusions. Recent advances in RNA sequence analysis have discovered specific ion channel expressions in nociceptors such as transient receptor potential (TRP) channels, voltage-gated potassium, and sodium channels.
View Article and Find Full Text PDFBackground: The vomeronasal organ (VNO) is specialized in detecting pheromone and heterospecific cues in the environment. Recent studies demonstrate the involvement of multiple ion channels in VNO signal transduction, including the calcium-activated chloride channels (CACCs). Opening of CACCs appears to result in activation of VNO neuron through outflow of Cl(-) ions.
View Article and Find Full Text PDFThe Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system has been widely used for nuclear DNA editing to generate mutations or correct specific disease alleles. Despite its flexible application, it has not been determined if CRISPR/Cas9, originally identified as a bacterial defense system against virus, can be targeted to mitochondria for mtDNA editing. Here, we show that regular FLAG-Cas9 can localize to mitochondria to edit mitochondrial DNA with sgRNAs targeting specific loci of the mitochondrial genome.
View Article and Find Full Text PDFThe vomeronasal organ (VNO) is essential for intraspecies communication in many terrestrial vertebrates. The ionic mechanisms of VNO activation remain unclear. We found that the calcium-activated potassium channel SK3 and the G protein-activated potassium channel GIRK are part of an independent pathway for VNO activation.
View Article and Find Full Text PDFIn terrestrial vertebrates, the vomeronasal organ (VNO) detects and transduces pheromone signals. VNO activation is thought to be mediated by the transient receptor potential C2 (TRPC2) channel. The aberrant behavioural phenotypes observed in TRPC2-/- mice are generally attributed to the lost VNO function.
View Article and Find Full Text PDF