Publications by authors named "Sang Rak Choe"

Organic graphitic carbon nitride nanoparticles (NP-g-CN), less than 30 nm in size, were synthesized and evaluated for photodynamic therapy (PDT) and cell imaging applications. NP-g-CN particles were prepared through an intercalation process using a rod-like melamine-cyanuric acid adduct (MCA) as the molecular precursor and a eutectic mixture of LiCl-KCl (45:55 wt%) as the reaction medium for polycondensation. The nano-dimensional NP-g-CN penetrated the malignant tumor cells with minimal hindrance and effectively generated reactive oxygen species (ROS) under visible light irradiation, which could ablate cancer cells.

View Article and Find Full Text PDF

A nanoporous carbon/cobalt oxide (NPC/CoO) composite was synthesized from a single-precursor (zeolitic imidazolate framework-67). Transmission electron microscopy showed that the CoO nanoparticles with an average particle size of 10 nm (±2 nm) were well dispersed in the NPC matrix. However, in a few places, CoO nanoparticles were aggregated.

View Article and Find Full Text PDF

In the present study, we successfully synthesized a porous three-dimensional Prussian blue-cellulose aerogel (PB-CA) composite and used it as a decorporation agent for the selective removal of ingested cesium ions (Cs) from the gastrointestinal (GI) tract. The safety of the PB-CA composite was evaluated through an in vitro cytotoxicity study using macrophage-like THP-1 cells and Caco-2 intestinal epithelial cells. The results revealed that the PB-CA composite was not cytotoxic.

View Article and Find Full Text PDF

We illustrate a facile approach for in situ synthesis of Pd-gum arabic/reduced graphene oxide (Pd-GA/RGO) using GA as the reducing agent, which favors the instantaneous reduction of both Pd ions and GO into Pd nanoparticles (NPs) and RGO. From the morphological analysis of Pd-GA/RGO, we observed highly dispersed spherical 5nm Pd NPs decorated over RGO. The as-synthesized Pd-GA/RGO composite was employed for the catalytic reduction and the electrochemical detection of 4-nitrophenol (4-NP), respectively.

View Article and Find Full Text PDF

A three dimensional reduced graphene oxide/polyurethane (RGO-PU) porous material with connected pores was prepared by physical adsorption of RGO onto the surface of porous PU. The porous PU was prepared by directional melt crystallization of a solvent, which produced high pores with controlled orientation. The prepared RGO-PU was characterized by scanning electron microscopy, spectroscopy and electro-chemical methods.

View Article and Find Full Text PDF