Tissue-engineered arterial vessels have been used as substitutes for unnecessary animal experiments to evaluate the pharmacokinetics of drugs targeting various arteriopathies caused by structural or physiological arterial defects. An arterial tissue culture system was established to simulate the mechanical characteristics of a heart-beating pump and to do online feedback control of lactate and glucose concentrations. The mechanically controlled flow pump mimicked the heart pumping inside a tissue-engineered artery composed of muscle and endothelial cells within a nanofibrous scaffold.
View Article and Find Full Text PDFThe small intestine is a digestive organ that has a complex and dynamic ecosystem, which is vulnerable to the risk of pathogen infections and disorders or imbalances. Many studies have focused attention on intestinal mechanisms, such as host-microbiome interactions and pathways, which are associated with its healthy and diseased conditions. This review highlights the intestine models currently used for simulating such normal and diseased states.
View Article and Find Full Text PDFMicroalgal carotenoids are attractive health ingredients, but their production should be optimized to improve cost-effectiveness. Understanding cellular physiology centered on carotenoid synthesis is the prerequisite for this work. Therefore, systematic correlation analyses were conducted among chlorophyll, carotenoids, non-pigmented cell mass, and cell number of Dunaliella salina in a specified condition over a relatively long culture time.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
View Article and Find Full Text PDFSince there are several casualties due to uncontrolled bleeding resulting from simple injury to surgery, effective styptic or vessel adhesives are important; however, their development is limited by the lack of standardized systems to evaluate potential compounds. The current study outlines the development of an aorta styptic evaluation system, comprising of decellularized swine aorta tissue and a heart pump-mimicking system. Although the cells in the swine aorta were removed, the structural stability of the aorta was sustained due to the maintenance of the extracellular matrix.
View Article and Find Full Text PDFArtificial skin or skin equivalents have been used for clinical purpose to skin graft and as substitutes for animal experiments. The culture of cell lines such as HaCaT has the potential to produce large amounts of artificial skin at a low cost. However, there is a limit to keratinization due to the restriction of differentiation in HaCaT.
View Article and Find Full Text PDFAtopic dermatitis (AD) is a complex skin disease primarily characterized by psoriasis of the stratum corneum. AD drugs have usually been used in acidic and hydrophilic solvents to supply moisture and prevent lipid defects. Ceramide is a typical treatment agent to regenerate the stratum corneum and relieve symptoms of AD.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
October 2015
Astrocytes are involved in neuron protection following central nervous system (CNS) injury; accordingly, engineered astrocytes have been investigated for their usefulness in cell therapy for CNS injury. Nanofibers have attracted a great deal of attention in neural tissue engineering, but their mechanical properties greatly influence physiology. Cellulose acetate (CA) has been studied for use in scaffolds owing to its biocompatibility, biodegradability, and good thermal stability.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
November 2015
Many investigations of wound dressings equipped with drug delivery systems have recently been conducted. Chitosan is widely used not only as a material for wound dressing by the efficacy of its own, but also as a nanoparticle for drug delivery. In this study, an electrospun polycaprolactone nanofiber composite with chitosan nanoparticles (ChiNP-PCLNF) was fabricated and then evaluated for its drug release and biocompatibility to skin fibroblasts.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2014
In bone tissue engineering, scaffolds have been investigated for their ability to support osteoblast growth and differentiation for recovery of damaged bones. Tunicate cellulose nanowhisker (CNW) film and mechanical strain were assessed for their suitability for osteoblasts. In this study, sulfuric acid hydrolysis extraction of tunicates integuments was conducted to obtain CNWs, which were found to be acceptable for adhering, growing, and differentiating osteoblasts without cytotoxicity.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
October 2013
Astrocytes support structure of central nervous system (CNS) and provide nutrients to neurons. When CNS is injured, astrocytes are activated and produce glia scar. There are debates if the reactive astrocytes give beneficial or harmful effects on neuronal regeneration.
View Article and Find Full Text PDFJ Biomed Mater Res A
December 2013
Nanomaterials are attractive for use in biological systems due to their ability to control the microenvironment of cells. Additionally, nanofibers can mimic fibrous characteristics of natural tissues. This study was conducted to assess astrocyte activity and infiltration behavior on Spirulina extract-embedded polycaprolactone (SP-PCL) nanofiber.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
January 2013
Skin is a barrier which protects injured tissues, and thus, skin regeneration is one of many important medical issues. Tissue engineering is an attractive approach to make artificial tissue or regenerate lost tissues. While constituting artificial tissues, cells must infiltrate through scaffolds, maintaining viability and proliferation.
View Article and Find Full Text PDFSeveral biomaterials for neural tissue engineering have recently been proposed for regeneration of damaged tissue and promotion of axonal guidance following CNS injury. When implanted into damaged nerve tissue, biomaterials should favorably induce cell infiltration and axonal guiding while suppressing inflammation. Nanofiber scaffolds are regarded as adequate materials to meet the above requirements; however, most studies of these materials conducted to date have targeted neuronal cells, not glial cells, despite their important function in the injured CNS.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
December 2012
The central nervous system (CNS), once injured, rarely recovers original function mainly due to its limited regeneration ability. Astrocytes are cells that play critical roles in neural regeneration. Several biomaterials have been studied to replace and regenerate lost tissues within injured CNS.
View Article and Find Full Text PDFThe blue-green microalgae, Spirulina, a harmless food and pharmaceutical additive, has several bioactive compounds that have therapeutic functions. Polycaprolactone (PCL) is a biocompatible and biodegradable polymer that has widely been used for tissue engineering. The electrospun PCL nanofiber containing Spirulina (PCL-Spirulina) was fabricated and tested as a potential extracellular matrix material for a culture of primary astrocytes, which play important roles in CNS injured systems.
View Article and Find Full Text PDF