Regulatory T cells (Tregs) induced during autoimmunity often become quiescent and unable to resolve disease, suggesting inadequate activation. Resolution of established experimental autoimmune encephalomyelitis (EAE) can be achieved with myelin oligodendrocyte glycoprotein (MOG) fused to reovirus protein σ1 (MOG-pσ1), which activates Tregs, restoring protection, but requiring other regulatory cells to revitalize them. B cells have a dichotomous role in both the pathogenesis and recovery from EAE.
View Article and Find Full Text PDFAutoimmune diseases arise from the loss of tolerance to self, and because the etiologies of such diseases are largely unknown, symptomatic treatments rely on anti-inflammatory and analgesic agents. Tolerogenic treatments that can reverse disease are preferred, but again, often thwarted by not knowing the responsible auto-antigens (auto-Ags). Hence, a viable alternative to stimulating regulatory T cells (Tregs) is to induce bystander tolerance.
View Article and Find Full Text PDFTo date, efforts to treat autoimmune diseases have primarily focused on the disease symptoms rather than on the cause of the disease. In large part, this is attributed to not knowing the responsible auto-antigens (auto-Ags) for driving the self-reactivity coupled with the poor success of treating autoimmune diseases using oral tolerance methods. Nonetheless, if tolerogenic approaches or methods that stimulate regulatory T (Treg) cells can be devised, these could subdue autoimmune diseases.
View Article and Find Full Text PDFBackground: Extracts of leaves from Clerodendrum have been used for centuries to treat a variety of medicinal problems in tropical Africa. However, little is known about the high-molecular weight active components conferring therapeutic properties to these extracts.
Methods: Polysaccharides from the leaves of Clerodendrum splendens were extracted and fractionated by ion exchange and size-exclusion chromatography.
Flagella are cell surface appendages involved in a number of bacterial behaviors, such as motility, biofilm formation, and chemotaxis. Despite these important functions, flagella can pose a liability to a bacterium when serving as potent immunogens resulting in the stimulation of the innate and adaptive immune systems. Previous work showing appendage overexpression, referred to as attenuating gene expression (AGE), was found to enfeeble wild-type Salmonella.
View Article and Find Full Text PDFDuring infection, Yersinia pestis uses its F1 capsule to enhance survival and cause virulence to mammalian host. Since F1 is produced in large quantities and secreted into the host tissues, it also serves as a major immune target. To hold this detrimental effect under proper control, Y.
View Article and Find Full Text PDFAn experimental vaccine for enterotoxigenic Escherichia coli (ETEC) composed of a live, attenuated Salmonella vector-expressing enterotoxigenic E. coli fimbriae, colonization factor Ag I (CFA/I), stimulated a biphasic Th cell response when given orally and suppressed the normally produced proinflammatory response. Such suppression was also evident upon the Salmonella-CFA/I infection of macrophages resulting in diminished TNF-alpha, IL-1, and IL-6 production and suggesting that the CFA/I fimbrial expression by Salmonella may protect against a proinflammatory disease.
View Article and Find Full Text PDFEnterotoxigenic Escherichia coli (ETEC) cause acute diarrhea in humans and farm animals, and can be fatal if the host is left untreated. As a potential alternative to traditional needle vaccination of cattle, we investigated the feasibility of expressing the major K99 fimbrial subunit, FanC, in soybean (Glycine max) for use as an edible subunit vaccine. As a first step in this developmental process, a synthetic version of fanC was optimized for expression in the cytosol and transferred to soybean via Agrobacterium-mediated transformation.
View Article and Find Full Text PDF