Publications by authors named "Sang K Noh"

The positional distribution pattern of fatty acids (FAs) in the triacylglycerols (TAGs) affects intestinal absorption of these FAs. The aim of this study was to compare lymphatic absorption of pinolenic acid (PLA) present in structured pinolenic TAG (SPT) where PLA was evenly distributed on the glycerol backbone, with absorption of pine nut oil (PNO) where PLA was predominantly positioned at the sn-3 position. SPT was prepared via the nonspecific lipase-catalyzed esterification of glycerol with free FA obtained from PNO.

View Article and Find Full Text PDF

This study aimed to compare lymphatic absorption of conjugated linoleic acids (CLAs) in the triacylglycerol (TAG) or free fatty acid (FFA) form and to examine the antiobesity effects of different doses of CLAs in the TAG form in animals. Conjugated linoleic TAGs (containing 70.3 wt% CLAs; CLA-TAG) were prepared through lipase-catalyzed esterification of glycerol with commercial CLA mixtures (CLA-FFA).

View Article and Find Full Text PDF

Green tea extract (GTE) protects against nonalcoholic steatohepatitis (NASH) by decreasing hepatic steatosis and nuclear factor kappa B (NFκB) activation. We hypothesized that hypolipidemic and anti-inflammatory activities of GTE would protect against NASH by reducing cyclooxygenase-2 (COX-2), an NFκB-dependent enzyme, and prostaglandin E2 (PGE2) in a dietary fat-induced obese model. Male Wistar rats were fed a low-fat diet containing no GTE or a high-fat (HF) diet containing GTE at 0%, 1%, or 2% for 8 weeks.

View Article and Find Full Text PDF

Methylglyoxal is a precursor to advanced glycation endproducts that may contribute to diabetes and its cardiovascular-related complications. Methylglyoxal is successively catabolized to D-lactate by glyoxalase-1 and glyoxalase-2. The objective of this study was to determine whether dietary fructose and green tea extract (GTE) differentially regulate methylglyoxal accumulation in liver and adipose, mediated by tissue-specific differences in the glyoxalase system.

View Article and Find Full Text PDF

Postprandial hyperglycemia induces oxidative stress responses, impairs vascular endothelial function (VEF) and increases the risk of cardiovascular disease. We hypothesized that the antioxidant and anti-inflammatory activities of a γ-tocopherol-rich mixture of tocopherols (γ-TmT) would protect against vascular dysfunction that is otherwise caused by postprandial hyperglycemia by decreasing oxidative stress and proinflammatory responses, and improving nitric oxide (NO•) homeostasis. In a randomized, crossover study, healthy men (n=15; 21.

View Article and Find Full Text PDF

Previously, we have shown that green tea extract (GTE) lowers the intestinal absorption of lipids and lipophilic compounds in rats. This study was conducted to investigate whether GTE inhibits the intestinal absorption and biliary secretion of benzo[a]pyrene (BaP), an extremely lipophilic potent carcinogen, present in foods as a contaminant. Male rats with lymph or bile duct cannula were infused at 3.

View Article and Find Full Text PDF

Postprandial hyperglycemia induces vascular endothelial dysfunction (VED) and increases future cardiovascular disease risk. We hypothesized that postprandial hyperglycemia would decrease vascular function in healthy men by inducing oxidative stress and proinflammatory responses and increasing asymmetric dimethylarginine:arginine (ADMA:arginine), a biomarker that is predictive of reduced NO biosynthesis. In a randomized, cross-over design, healthy men (n = 16; 21.

View Article and Find Full Text PDF

Regulatory T cells (Treg) are critical in maintaining immune tolerance and suppressing autoimmunity. The transcription factor Foxp3 serves as a master switch that controls the development and function of Treg. Foxp3 expression is epigenetically regulated by DNA methylation, and DNA methyltransferase (DNMT) inhibitors can induce Foxp3 expression in naive CD4(+) T cells.

View Article and Find Full Text PDF

Animal and epidemiological studies suggest that green tea catechins may reduce the risk of cardiovascular diseases [e.g., coronary heart disease (CHD)].

View Article and Find Full Text PDF

We conducted this study to determine whether green tea constituents, (-)-epigallocatechin gallate (EGCG) and caffeine, affect the intestinal absorption of cholesterol (CH), fat, and other fat-soluble compounds. Ovariectomized rats with lymph cannula were infused intraduodenally with a lipid emulsion containing 14C-labeled CH (14C-CH), alpha-tocopherol (alpha TOH), triolein, and sodium taurocholate, without (control) or with EGCG, caffeine, or EGCG plus caffeine, in PBS, pH 6.5.

View Article and Find Full Text PDF

This study was conducted to examine whether the inhibition of intestinal lipid absorption by green tea is associated with the inhibitory effect of its catechins on pancreatic phospholipase A(2) (PLA(2)). PLA(2) activity was assayed by using 1,2-dioleoylphosphatidylcholine (DOPC), porcine pancreatic PLA(2) and catechins at varying concentrations (0.075-1.

View Article and Find Full Text PDF

This study was conducted to determine whether the feeding of dietary L-carnitine (CN) improves the intestinal absorption of fat and alpha-tocopherol (alphaTOH) in ovariectomized (OX) rats. OX adult rats were weight-matched and assigned to 2 groups fed a modified AIN-93G diet containing alphaTOH-stripped soybean oil without (-CN) or with (+CN) supplemental CN at 150 mg/kg diet. At 5 wk, each rat with a lymph cannula was infused intraduodenally at 3.

View Article and Find Full Text PDF

We reported previously that egg sphingomyelin (SM) inhibits the intestinal absorption of cholesterol and fat in rats. This study was conducted to compare the relative efficiencies of milk and egg SM in inhibiting intestinal absorption of cholesterol and other lipids. Adult male rats with lymph cannulae were infused at 3.

View Article and Find Full Text PDF

Tetracyclic pyrans (+)-chloropuupehenone (1) and (+)-chloropuupehenol (5) and its C8-R-isomer (+)-3 were synthesized via a one-pot condensation of 1-chloro-2-lithio-3,5,6-tris(tert-butyldimethylsilyloxy)benzene (8) with (4aS,8aS)-3,4,4a,5,6,7,8,8a-octahydro-2,5,5,8a-tetramethylnaphthalene-1-carboxaldehyde (7). The major condensation product, (4aS,6aR,12bS)-2H-9,10-bis(tert-butyldimethylsilyloxy)-11-chloro-1,3,4,4a,5,6,6a,12b-octahydro-4,4,6a,12b-tetramethyl-benzo[a]xanthene (4), after desilylation provided tetracyclic pyran (+)-(4aS,6aR,12bS)-2H-11-chloro-1,3,4,4a,5,6,6a,12b-octahydro-4,4,6a,12b-tetramethyl-benzo[a]xanthene-9,10-diol (3). At a dosage of 42 mg/rat over 8 h, pyran diol 3 inhibited the intestinal absorption of cholesterol by 71% in rats.

View Article and Find Full Text PDF

Evidence indicates that phosphatidylcholine (PC) inhibits the intestinal absorption of cholesterol (CH) in rats. This study was designed to determine whether sphingomyelin (SM), structurally similar to PC, also inhibits the lymphatic absorption of CH. Sprague-Dawley rats with lymph cannulae were infused at 3.

View Article and Find Full Text PDF

Previously, we have shown that the lymphatic absorption of retinol is significantly decreased in rats fed a low zinc diet. This study was conducted to determine whether the absorption of beta-carotene also is altered in zinc-deficient male rats. The absorption of beta-carotene was estimated by determining the amount of retinol appearing in the mesenteric lymph during intraduodenal infusion of beta-carotene.

View Article and Find Full Text PDF

Evidence indicates that green tea consumption lowers the serum level of cholesterol (CH). This study was conducted to determine whether green tea lowers the intestinal absorption of CH and other lipids in ovariectomized (OX) rats. OX rats with lymph duct cannulae were infused at 3.

View Article and Find Full Text PDF