Acquired resistance to tamoxifen (TAM) is a serious therapeutic problem in breast cancer patients. In this study, we found that the expressions of anti-oxidant proteins (gamma-glutamylcysteine ligase heavy chain (gamma-GCL h), heme oxygenase-1, thioredoxin and peroxiredoxin1) in TAM-resistant MCF-7 (TAMR-MCF-7) cells were higher than control MCF-7 cells. Molecular analyses using antioxidant response element (ARE)-containing reporters and gel-shift supported the critical role of NF-E2-related factor2 (Nrf2)/ARE in the overexpression of antioxidant proteins in TAMR-MCF-7 cells.
View Article and Find Full Text PDFBoth the functional loss of p53 and the overexpression of aromatase are important for the progression of breast cancer in postmenopausal women. Here, we found that aromatase expression was up-regulated in primary cultures of mammary epithelial cells (p53(Delta)(5,6) MEC) isolated from mice with a defect in exons 5 and 6 of the p53 gene. Aromatase basal activity and expression levels were significantly increased in p53(Delta)(5,6) MEC when compared with wild-type MEC.
View Article and Find Full Text PDFAcquired resistance to tamoxifen (TAM) is a serious therapeutic problem in breast cancer patients. The transition from chemotherapy-responsive breast cancer cells to chemotherapy-resistant cancer cells is mainly accompanied by the increased expression of multidrug resistance-associated proteins (MRPs). In this study, it was found that TAM-resistant MCF-7 (TAMR-MCF-7) cells expressed higher levels of MRP2 than control MCF-7 cells.
View Article and Find Full Text PDF