Publications by authors named "Sang Eon Park"

Human mesenchymal stem cells (hMSCs) have therapeutic applications and potential for use in regenerative medicine. However, the use of hMSCs in research and clinical medicine is limited by a lack of information pertaining to their donor-specific functional attributes. In this study, we compared the characteristics of same-donor derived placenta (PL) and Wharton's jelly (WJ)-derived hMSCs, we also compared their mechanism of action in a skeletal muscle disease in vitro model.

View Article and Find Full Text PDF

Charcot-Marie-Tooth disease type 1A (CMT1A) is a demyelinating disease caused by PMP22 duplication and an exceedingly rare hereditary peripheral neuropathy, with an incidence of 1 in 2500. Currently, no cure exists for CMT1A; however, various therapeutic approaches are under development. Considering the known therapeutic effects of mesenchymal stem cells (MSCs) and the relation of blood sugar levels with nerve damage in CMT, this study aimed to confirm the therapeutic effects of MSCs and insulin on CMT, using both in-vitro and in-vivo models.

View Article and Find Full Text PDF

Adipose tissue engraftment has become a promising strategy in the field of regenerative surgery; however, there are notable challenges associated with it, such as resorption of 50‑90% of the transplanted fat or cyst formation due to fat necrosis after fat transplantation. Therefore, identifying novel materials or methods to improve the engraftment efficiency is crucial. The present study investigated the effects of nervonic acid (NA), a monounsaturated very long‑chain fatty acid, on adipogenesis and fat transplantation, as well as its underlying mechanisms.

View Article and Find Full Text PDF

With an increasing societal need for digital therapy solutions for poor mental health, we face a corresponding rise in demand for scientifically validated digital contents. In this study we aimed to lay a sound scientific foundation for the development of brain-based digital therapeutics to assess and monitor cognitive effects of social and emotional bias across diverse populations and age-ranges. First, we developed three computerized cognitive tasks using animated graphics: 1) an emotional flanker task designed to test attentional bias, 2) an emotional go-no-go task to measure bias in memory and executive function, and 3) an emotional social evaluation task to measure sensitivity to social judgments.

View Article and Find Full Text PDF
Article Synopsis
  • Replicative senescence in mesenchymal stem cells (MSCs) reduces their ability to grow and work as effective therapies, creating challenges for cell therapy.
  • The study investigates the role of glutaminase-1 (GLS1) in MSC senescence, showing that inhibiting GLS1 can help remove senescent cells and improve MSC functionality.
  • Findings reveal that GLS1 inhibition in Wharton's jelly-derived MSCs enhances their proliferation, muscle formation, and overall therapeutic potential, suggesting GLS1 as a target for improving MSC-based treatments in muscle diseases like Duchenne muscular dystrophy.
View Article and Find Full Text PDF
Article Synopsis
  • Cellular senescence leads to a halt in cell growth, affecting mesenchymal stem cells (MSCs) by reducing their ability to proliferate and differentiate, making aged MSCs unsuitable for therapeutic use.
  • Researchers have identified nervonic acid (NA) from a fecal metabolites library as a promising candidate that can regulate this senescence in MSCs.
  • NA was found to decrease indicators of senescence, promote stem cell qualities, and improve cell proliferation, suggesting its potential as a treatment for managing cellular aging.
View Article and Find Full Text PDF

Despite distinct neural representation of what, where, and when information, studies of individual differences in episodic memory have neglected to test the three components separately. Here, we used a componential episodic memory task to measure cognitive profiles across a wide age range and in Alzheimer disease (AD) and to examine the role of theta oscillations in explaining performance. In Experiment 1, we tested a group of 47 young adults (age 21-30 years, 21 women) while recording their scalp EEG.

View Article and Find Full Text PDF

The , , and components of episodic memory can be differentiated based on their distinctive domain-specific underlying neural correlates. However, recent studies have proposed that a common neural mechanism of conceptual mapping may be involved in the coding of cognitive distance across all domains. In this study, we provide evidence that both domain-specific and domain-general processes occur simultaneously during memory retrieval by identifying distinctive and common neural representations for mapping (i.

View Article and Find Full Text PDF

We present a high-performance laser frequency stabilization method using modulation transfer spectroscopy (MTS) on the rubidium D transition line. A substantial improvement of the laser frequency stability was achieved by searching for the optimal diameter and intensity settings of the probe and pump beam. The frequency instability measured from the beat frequency of two locked external cavity diode lasers (ECDLs) reached a short-term stability of 4.

View Article and Find Full Text PDF

Constructing a mono-atom step-level ultra-flat material surface is challenging, especially for thin films, because it is prohibitively difficult for trillions of clusters to coherently merge. Even though a rough metal surface, as well as the scattering of carriers at grain boundaries, limits electron transport and obscures their intrinsic properties, the importance of the flat surface has not been emphasised sufficiently. In this study, we describe in detail the initial growth of copper thin films required for mono-atom step-level flat surfaces (MSFSs).

View Article and Find Full Text PDF

Transporting cold atoms between interconnected vacuum chambers is an important technique for increasing the versatility of cold atom setups, particularly for those that couple atoms to photonic devices. In this report, we introduce a method where we are able to image the atoms at all points during transport via moving optical dipole trap. Cooled Rb atoms are transported ∼50 cm into an auxiliary vacuum chamber while being monitored with a moving-frame imaging system for which in-situ characterization of the atom transport is demonstrated.

View Article and Find Full Text PDF

Myostatin is a member of the transforming growth factor-beta superfamily and is an endogenous negative regulator of muscle growth. This study aimed to determine whether an oral administration of expressing modified human myostatin (BLS-M22) could elicit sufficient levels of myostatin-specific antibody and improve the dystrophic features of an animal model of Duchenne muscular dystrophy (DMD; mouse). BLS-M22 is a recombinant engineered to harbor the pKV vector and poly-gamma-glutamic acid gene linked to a modified human myostatin gene.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are effective therapeutic agents that contribute to tissue repair and regeneration by secreting various factors. However, donor-dependent variations in MSC proliferation and therapeutic potentials result in variable production yields and clinical outcomes, thereby impeding MSC-based therapies. Hence, selection of MSCs with high proliferation and therapeutic potentials would be important for effective clinical application of MSCs.

View Article and Find Full Text PDF

To enable the reusability of massive scientific datasets by humans and machines, researchers aim to adhere to the principles of findability, accessibility, interoperability, and reusability (FAIR) for data and artificial intelligence (AI) models. This article provides a domain-agnostic, step-by-step assessment guide to evaluate whether or not a given dataset meets these principles. We demonstrate how to use this guide to evaluate the FAIRness of an open simulated dataset produced by the CMS Collaboration at the CERN Large Hadron Collider.

View Article and Find Full Text PDF

We present a parameter set for obtaining the maximum number of atoms in a grating magneto-optical trap (gMOT) by employing a machine learning algorithm. In the multi-dimensional parameter space, which imposes a challenge for global optimization, the atom number is efficiently modeled via Bayesian optimization with the evaluation of the trap performance given by a Monte-Carlo simulation. Modeling gMOTs for six representative atomic species - Li, Na, Rb, Sr, Cs, Yb - allows us to discover that the optimal grating reflectivity is consistently higher than a simple estimation based on balanced optical molasses.

View Article and Find Full Text PDF

A new paradigm for data-driven, model-agnostic new physics searches at colliders is emerging, and aims to leverage recent breakthroughs in anomaly detection and machine learning. In order to develop and benchmark new anomaly detection methods within this framework, it is essential to have standard datasets. To this end, we have created the LHC Olympics 2020, a community challenge accompanied by a set of simulated collider events.

View Article and Find Full Text PDF

The aim of this study was to evaluate the therapeutic effects and mechanisms of Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) in an animal model of Duchenne muscular dystrophy (DMD). Mdx mice (3-5 months old) were administered five different doses of WJ-MSCs through their tail veins. A week after injection, grip strength measurements, creatine kinase (CK) assays, immunohistochemistry, and western blots were performed for comparison between healthy mice, mdx control mice, and WJ-MSC-injected mdx mice.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) have emerged as a promising tool for the treatment of Alzheimer's disease (AD). Previous studies suggested that the coculture of human MSCs with AD in an model reduced the expression of amyloid-beta 42 (A42) in the medium as well as the overexpression of amyloid-beta- (A-) degrading enzymes such as neprilysin (NEP). We focused on the role of primed MSCs (human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) exposed to an AD cell line via a coculture system) in reducing the levels of A and inhibiting cell death.

View Article and Find Full Text PDF

We report a chip-scale atomic magnetometer based on coherent population trapping, which can operate near zero magnetic field. By exploiting the asymmetric population among magnetic sublevels in the hyperfine ground state of cesium, we observe that the resonance signal acquires sensitivity to magnetic field in spite of degeneracy. A dispersive signal for magnetic field discrimination is obtained near-zero-field as well as for finite fields (tens of micro-tesla) in a chip-scale device of 0.

View Article and Find Full Text PDF

Neural modulation is a fundamental tool for understanding and treating neurological and psychiatric diseases. However, due to the high-dimensional space, subject-specific responses, and variability within each subject, it is a major challenge to select the stimulation parameters that have the desired effect. Data-driven optimization provides a range of different algorithms and tools for addressing this challenge, but each of these algorithms has specific strengths and limitations, and therefore must be carefully designed for a given neural modulation problem.

View Article and Find Full Text PDF

Dramatically increased CO concentration from several point sources is perceived to cause severe greenhouse effect towards the serious ongoing global warming with associated climate destabilization, inducing undesirable natural calamities, melting of glaciers, and extreme weather patterns. CO capture and utilization (CCU) has received tremendous attention due to its significant role in intensifying global warming. Considering the lack of a timely review on the state-of-the-art progress of promising CCU techniques, developing an appropriate and prompt summary of such advanced techniques with a comprehensive understanding is necessary.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are safe, and they have good therapeutic efficacy through their paracrine action. However, long-term culture to produce sufficient MSCs for clinical use can result in side-effects, such as an inevitable senescence and the reduction of the therapeutic efficacy of the MSCs. In order to overcome this, the primary culture conditions of the MSCs can be modified to simulate the stem cells' niche environment, resulting in accelerated proliferation, the achievement of the target production yield at earlier passages, and the improvement of the therapeutic efficacy.

View Article and Find Full Text PDF

Extracellular matrix (ECM) components play an important role in maintaining skeletal muscle function, but excessive accumulation of ECM components interferes with skeletal muscle regeneration after injury, eventually inducing fibrosis. Increased oxidative stress level caused by dystrophin deficiency is a key factor in fibrosis in Duchenne muscular dystrophy (DMD) patients. Mesenchymal stem cells (MSCs) are considered a promising therapeutic agent for various diseases involving fibrosis.

View Article and Find Full Text PDF

Zeolites have attracted great interest as an adsorbent for the removal of volatile organic compounds. However, they suffer from low adsorption capacities due to severe diffusion limitations. Here, the effects of zeolite thickness and mesopore architecture on dynamic adsorption of p-xylene have been examined with a number of MFI-type zeolites with different crystal thicknesses and mesopore openings (i.

View Article and Find Full Text PDF

Objective: Developing a new neuromodulation method for epilepsy treatment requires a large amount of time and resources to find effective stimulation parameters and often fails due to inter-subject variability in stimulation effect. As an alternative, we present a novel data-driven surrogate approach which can optimize the neuromodulation efficiently by investigating the stimulation effect on surrogate neural states.

Approach: Medial septum (MS) optogenetic stimulation was applied for modulating electrophysiological activities of the hippocampus in a rat temporal lobe epilepsy model.

View Article and Find Full Text PDF