Research on the role of the lysosome as the terminal organelle in autophagy and in communicating with other organelles in skeletal muscle is in its infancy. We hypothesize that the lysosome can adapt positively to exercise to improve the clearance of cargo, like dysfunctional mitochondria, within muscle, representing an important therapy for protein homeostasis in aging and muscle disuse.
View Article and Find Full Text PDFFree Radic Biol Med
November 2024
Lysosomes play a critical role as a terminal organelle in autophagy flux and in regulating protein degradation, but their function and adaptability in skeletal muscle is understudied. Lysosome functions include both housekeeping and signaling functions essential for cellular homeostasis. This review focuses on the regulation of lysosomes in skeletal muscle during exercise, disuse, and aging, with a consideration of sex differences as well as the role of lysosomes in mediating the degradation of mitochondria, termed mitophagy.
View Article and Find Full Text PDFAtrial fibrillation (AF) is a supraventricular tachyarrhythmia that is strongly associated with cardiovascular (CV) disease and sedentary lifestyles. Despite the benefits of exercise on overall health, AF incidence in high-level endurance athletes rivals that of CV disease patients, suggesting a J-shaped relationship with AF. To investigate the dependence of AF vulnerability on exercise, we varied daily swim durations (120, 180 or 240 min day ) in 7-week-old male CD1 mice.
View Article and Find Full Text PDFMitochondrial function is widely recognized as a major determinant of health, emphasizing the importance of understanding the mechanisms promoting mitochondrial quality in various tissues. Recently, the mitochondrial unfolded protein response (UPR) has come into focus as a modulator of mitochondrial homeostasis, particularly in stress conditions. In muscle, the necessity for activating transcription factor 4 (ATF4) and its role in regulating mitochondrial quality control (MQC) have yet to be determined.
View Article and Find Full Text PDFThe biogenesis of mitochondria requires the coordinated expression of the nuclear and the mitochondrial genomes. However, the vast majority of gene products within the organelle are encoded in the nucleus, synthesized in the cytosol, and imported into mitochondria via the protein import machinery, which permit the entry of proteins to expand the mitochondrial network. Once inside, proteins undergo a maturation and folding process brought about by enzymes comprising the unfolded protein response (UPR).
View Article and Find Full Text PDF