Publications by authors named "Sanford Ruhman"

Quantifying stimulated emission in semiconductor nanocrystals (NCs) remains challenging due to masking of its effects on pump-probe spectra by excited state absorption and ground state bleaching signals. The absence of this defining photophysical parameter in turn impedes assignment of band edge electronic structure in many of these important fluorophores. Here we employ a generally applicable 3-pulse ultrafast spectroscopic method coined the "Spectator Exciton" (SX) approach to measure stimulated-emission efficiency in quantum confined inorganic perovskite CsPbBr NCs, the band edge electronic structure of which is the subject of lively ongoing debate.

View Article and Find Full Text PDF

Pump-probe spectroscopy is a powerful tool to investigate light-induced dynamical processes in molecules and solids. Targeting vibrational excitations occurring on the time scales of nuclear motions is challenging, as pulse durations shorter than a vibrational period are needed to initiate the dynamics, and complex experimental schemes are required to isolate weak signatures arising from wavepacket motion in different electronic states. Here, we demonstrate how introducing a temporal delay between the spectral components of femtosecond beams, namely a chirp resulting in the increase of their duration, can counterintuitively boost the desired signals by 2 orders of magnitude.

View Article and Find Full Text PDF

We report high-level calculations of the excited states of [2,2]-paracyclophane (PCP), which was recently investigated experimentally by ultrafast pump-probe experiments on oriented single crystals [Haggag et al., ChemPhotoChem 6 e202200181 (2022)]. PCP, in which the orientation of the two benzene rings and their range of motion are constrained, serves as a model for studying benzene excimer formation.

View Article and Find Full Text PDF

Discovered over 50 years ago, bacteriorhodopsin is the first recognized and most widely studied microbial retinal protein. Serving as a light-activated proton pump, it represents the archetypal ion-pumping system. Here we compare the photochemical dynamics of bacteriorhodopsin light and dark-adapted forms with that of the first metastable photocycle intermediate known as "K".

View Article and Find Full Text PDF

Energy transfer from light-harvesting ketocarotenoids to the light-driven proton pump xanthorhodopsins has been previously demonstrated in two unique cases: an extreme halophilic bacterium and a terrestrial cyanobacterium. Attempts to find carotenoids that bind and transfer energy to abundant rhodopsin proton pumps from marine photoheterotrophs have thus far failed. Here we detected light energy transfer from the widespread hydroxylated carotenoids zeaxanthin and lutein to the retinal moiety of xanthorhodopsins and proteorhodopsins using functional metagenomics combined with chromophore extraction from the environment.

View Article and Find Full Text PDF

The decades-long ultrafast examination of nearly a dozen microbial retinal proteins, ion pumps, and sensory photoreceptors has not identified structure-function indicators which predict photoisomerization dynamics, whether it will be sub-picosecond and ballistic or drawn out with complex curve-crossing kinetics. Herein, we report the emergence of such an indicator. Using pH control over retinal isomer ratios, photoinduced transient absorption is recorded in an inward proton pumping Antarctic microbial rhodopsin (AntR) for 13- and retinal resting states.

View Article and Find Full Text PDF

Due to their unique excited state dynamics, acenes play a dominant role in optoelectronic and light-harvesting applications. Their optical and electronic properties are typically tailored by side-group engineering, which often result in distortion of the acene core from planarity. However, the effect of such distortion on their excited state dynamics is not clear.

View Article and Find Full Text PDF

In π-conjugated macrocycles, there is a trade-off between the global and local expression of effects such as aromaticity, with the outcome of the trade-off determined by the geometry and aromaticity of the constituent units. Compared with other aromatic rings, the aromatic character of furan is relatively small, and therefore global effects in macrocyclic furans are expected to be more pronounced. Following our introduction of macrocyclic oligofuran, we present the first synthesis of a series of π-conjugated bifuran macrocycles of various ring sizes, from trimer to hexamer, and characterize them using both computational and experimental methods.

View Article and Find Full Text PDF

Absolute absorption changes in molecular flash photolysis experiments are routinely translated into molar extinction coefficients and oscillator strengths of reactive intermediates. These direct quantum chemical investigation and allow precise concentration readings in later experiments. In this Perspective we show how a similar approach can deliver crucial information for interpreting transient absorption spectra in colloidal semiconductor quantum dots.

View Article and Find Full Text PDF

Transient absorption measurements were conducted on pristine and monoexciton saturated CsPbBr nanocrystals varying in size within the regime of a strong quantum confinement. Once the difference spectra were translated to absolute transient changes in absorption cross section, a single exciton is shown to completely bleach the band edge absorption peak and induce a new absorption roughly two times weaker ∼100 meV to the blue. Difference spectra obtained during Auger recombination of biexciton demonstrate that the addition of a second exciton, rather than double the effect of a first, bleaches the blue-induced absorption band without producing a net stimulated emission at the band edge.

View Article and Find Full Text PDF

Numerous studies have reported that transient absorption spectra in core CdSe nanocrystals do not register state filling in 1Sh, an absence which has profound consequences in light-emitting applications. It has been assigned alternatively to rapid hole trapping, or to distribution over a dense degenerate valence band manifold which includes dark states. Here we attempt to observe early contributions of nascent holes to the bleaching of the band edge exciton transition by conducting 1Se1Sh pump-1Se1Sh probe spectroscopy with <10 fs laser pulses on organic ligand passivated CdSe crystals.

View Article and Find Full Text PDF

Despite decades of investigation, mechanistic details of aqueous permanganate photo-decomposition remain unclear. Here we follow photoinduced dynamics of aqueous permanganate with femtosecond spectroscopy. Photoexcitation of KMnO(aq) in the visible unleashes a sub-picosecond cascade of non-radiative transitions, leading to a distinct species which relaxes to S with a lifetime of 16 ps.

View Article and Find Full Text PDF

The conjecture that, as in bulk semiconductors, hot multiexcitons in nanocrystals cool rapidly to the lowest available energy levels is tested here by recording the effects of a single cold "spectator" exciton on the relaxation dynamics of a subsequently deposited hot counterpart. Results in CdSe/CdS nanodots show that a preexisting cold "spectator exciton" allows only half of the photoexcited electrons to relax directly to the band-edge. The rest are blocked in an excited quantum state due to conflicts in spin orientation.

View Article and Find Full Text PDF

By comparing two-dimensional electronic spectroscopy (2DES) and Pump-Probe (PP) measurements on xanthorhodopsin (XR) and reduced-xanthorhodopsin (RXR) complexes, the ultrafast carotenoid-to-retinal energy transfer pathway is revealed, at very early times, by an excess of signal amplitude at the associated cross-peak and by the carotenoid bleaching reduction due to its ground state recovery. The combination of the measured 2DES and PP spectroscopic data with theoretical modelling allows a clear identification of the main experimental signals and a comprehensive interpretation of their origin and dynamics. The remarkable velocity of the energy transfer, despite the non-negligible energy separation between the two chromophores, and the analysis of the underlying transport mechanism, highlight the role played by the ground state carotenoid vibrations in assisting the process.

View Article and Find Full Text PDF

Due to the sizable refractive index of lead halide perovskites, reflectivity off their interface with air exceeds 15%. This has prompted a number of investigations into the prominence of photoreflective contributions to pump-probe data in these materials, with conflicting results. Here we report experiments aimed at assessing this by comparing transient transmission from lead halide perovskite films and weakly quantum confined nanocrystals of cesium lead iodide (CsPbI) perovskite.

View Article and Find Full Text PDF

Sub-10 fs resolution pump-probe experiments on methylammonium lead halide perovskite films are described. Initial response to photoexcitation is assigned to localized hot excitons which dissociate to free carriers. This is attested to by band integrals of the pump-probe spectra where photoinduced bleaching rises abruptly 20 fs after photoexcitation.

View Article and Find Full Text PDF

Impulsive Raman excitation in neat organic liquids far from resonance is followed using chirped broad-band supercontinuum probe pulses. Spectral modulations due to impulsively induced coherent vibrations vary in intensity 10-fold as a function of the probe's linear chirp. Simulations clarify why the vibrational signature is maximized for a group delay dispersion (GDD) in reduced units of ν = 0.

View Article and Find Full Text PDF

Ultrafast photochemistry of pharaonis halorhodopsin (p-HR) in the intact membrane of Natronomonas pharaonis has been studied by photoselective femtosecond pump-hyperspectral probe spectroscopy with high time resolution. Two variants of this sample were studied, one with wild-type retinal prosthetic groups and another after shifting the retinal absorption deep into the blue range by reducing the Schiff base linkage, and the results were compared to a previous study on detergent-solubilized p-HR. This comparison shows that retinal photoisomerization dynamics is identical in the membrane and in the solubilized sample.

View Article and Find Full Text PDF

Formation of benzene excimer following UV excitation of the neat liquid is monitored with femtosecond spectroscopy. A prompt rise component in excimer transient absorption, which contradicts the classical scenario of gradual reorientation and pairing of the excited monomers, is observed. Three-pulse experiments in which the population of evolving excimers is depleted by a secondary dump pulse demonstrate that the excimer absorption band is polarized along the interfragment axis.

View Article and Find Full Text PDF

Primary photochemical events in the unusually thermostable proton pumping rhodopsin of Thermus thermophilus bacterium (TR) are reported for the first time. Internal conversion in this protein is shown to be significantly faster than in bacteriorhodopsin (BR), making it the most rapidly isomerizing microbial proton pump known. Internal conversion (IC) dynamics of TR and BR were recorded from room temperature to the verge of thermal denaturation at 70 °C and found to be totally independent of temperature in this range.

View Article and Find Full Text PDF

The effect of Cu impurities on the absorption cross section, the rate of hot exction thermalization, and on exciton recombination processes in InAs quantum dots was studied by femtosecond transient absorption. Our findings reveal dynamic spectral effects of an emergent impurity sub-band near the bottom of the conduction band. Previously hypothesized to explain static photophysical properties of this system, its presence is shown to shorten hot carrier relaxation.

View Article and Find Full Text PDF

Above band-edge photoexcitation of PbSe nanocrystals induces strong below band gap absorption as well as a multiphased buildup of bleaching in the 1Se1Sh transition. The amplitudes and kinetics of these features deviate from expectations based on biexciton shifts and state filling, which are the mechanisms usually evoked to explain them. To clarify these discrepancies, the same transitions are investigated here by double-pump-probe spectroscopy.

View Article and Find Full Text PDF

The retinal proton pump xanthorhodopsin (XR) was recently found to function with an attached carotenoid light harvesting antenna, salinixanthin (SX). It is intriguing to discover if this departure from single chromophore architecture is singular or if it has been adopted by other microbial rhodopsins. In search of other cases, retinal protein encoding genes in numerous bacteria have been identified containing sequences corresponding to carotenoid binding sites like that in XR.

View Article and Find Full Text PDF

Microbial rhodopsins are photoactive proteins, and their binding site can accommodate either all-trans or 13-cis retinal chromophore. The pH dependence of isomeric composition, dark-adaptation rate, and primary events of Anabaena sensory rhodopsin (ASR), a microbial rhodopsin discovered a decade ago, are presented. The main findings are: (a) Two pKa values of 6.

View Article and Find Full Text PDF