Publications by authors named "Sanford G Meek"

Animals adjust their leg stiffness and stride angle in response to changing ground conditions and gait parameters, resulting in improved stability and reduced energy consumption. This paper presents an online learning algorithm that attempts to mimic such animal behavior by maximizing energy efficiency on the fly or equivalently, minimizing the cost of transport of legged robots by adaptively changing the leg stiffness and stride angle while the robot is traversing on grounds with unknown characteristics. The algorithm employs an approximate stochastic gradient method to change the parameters in real-time, and has the following advantages: (1) the algorithm is computationally efficient and suitable for real-time operation; (2) it does not require training; (3) it is model-free, implying that precise modeling of the robot is not required for good performance; and (4) the algorithm is generally applicable and can be easily incorporated into a variety of legged robots with adaptable parameters and gaits beyond those implemented in this paper.

View Article and Find Full Text PDF

Asynchronous intrafascicular multi-electrode stimulation (aIFMS) of small independent populations of peripheral nerve motor axons can evoke selective, fatigue-resistant muscle forces. We previously developed a real-time proportional closed-loop control method for aIFMS generation of isometric muscle force and the present work extends and adapts this closed-loop controller to the more demanding task of dynamically controlling joint position in the presence of opposing joint torque. A proportional-integral-velocity controller, with integrator anti-windup strategies, was experimentally validated as a means to evoke motion about the hind-limb ankle joint of an anesthetized feline via aIFMS stimulation of fast-twitch plantar-flexor muscles.

View Article and Find Full Text PDF

Although asynchronous intrafascicular multi-electrode stimulation (IFMS) can evoke fatigue-resistant muscle force, a priori determination of the necessary stimulation parameters for precise force production is not possible. This paper presents a proportionally-modulated, multiple-input single-output (MISO) controller that was designed and experimentally validated for real-time, closed-loop force-feedback control of asynchronous IFMS. Experiments were conducted on anesthetized felines with a Utah Slanted Electrode Array implanted in the sciatic nerve, either acutely or chronically ( n = 1 for each).

View Article and Find Full Text PDF

Open loop and force controllers are compared experimentally with three robust parallel force-velocity controllers that are developed for a prosthetic hand. Robust sliding mode, backstepping, and hybrid sliding mode-backstepping (HSMBS) parallel force-velocity controllers are tested by ten able-bodied subjects. Results obtained with a myoelectrically controlled prosthesis indicate that all three robust controllers offer a statistically significant improvement over linear hand prosthesis control schemes.

View Article and Find Full Text PDF

Four different methods of hand prosthesis control are developed and examined experimentally. Open-loop control is shown to offer the least sensitivity when manipulating objects. Force feedback substantially improves upon open-loop control.

View Article and Find Full Text PDF

Pulse frequency modulation (PFM) is a method of encoding information where the instantaneous frequency of a pulse train carries the signal's information. PFM is of particular interest to those working towards interfacing prosthetic devices directly with the human nervous system. In this paper, we consider the effects of directly implementing PFM with a digital microprocessor.

View Article and Find Full Text PDF

Limb design is well conserved among quadrupeds, notably, the knees point forward (i.e. cranial inclination of femora) and the elbows point back (i.

View Article and Find Full Text PDF