Publications by authors named "Sanford D Eigenbrode"

Assessing the risk of nontarget attack (NTA) for federally listed threatened and endangered (T&E) plant species confamilial to invasive plants targeted for classical biological control, is one of the most important objectives of pre-release environmental safety assessments in the United States. However, evaluating potential NTA on T&E species is often complicated by restrictive agency requirements for obtaining propagules, or the ability to propagate plants and rear agents to the appropriate phenostages synchronously for testing, or both. Here, we assessed whether plant cues associated with a host recognition can be used for testing the attractiveness of four T&E and one rare single population plant species non-destructively for a candidate biocontrol agent.

View Article and Find Full Text PDF

Climate change is expected to alter pressure from insect pests and the abundance and effectiveness of insect pollinators across diverse agriculture and forestry systems. In response to warming, insects are undergoing or are projected to undergo shifts in their geographic ranges, voltinism, abundance, and phenology. Drivers include direct effects on the focal insects and indirect effects mediated by their interactions with species at higher or lower trophic levels.

View Article and Find Full Text PDF
Article Synopsis
  • Ongoing environmental changes impact pest populations, with potential variations in response between invasive and naturalized species; a study compared the invasive aphid Metopolophium festucae cerealium with its naturalized relatives across 141 winter wheat fields in the Pacific Northwest over four years.
  • Key climatic factors like cumulative precipitation and temperature were analyzed alongside landscape factors, revealing that M. festucae cerealium thrived in wetter conditions, while the naturalized species favored warmer temperatures; this suggests increased precipitation may benefit the invasive species.
  • The findings indicate that earlier sampling periods correspond with higher abundance of M. festucae cerealium, highlighting the need for adaptive pest management strategies in response to its establishment and potential impact on crops.
View Article and Find Full Text PDF

Global temperatures are generally increasing, and this is leading to a well documented advancement and extension of seasonal activity of many pest insects. Effects of changing precipitation have received less attention, but might be complex because rain and snow are increasing in some places but decreasing in others. This raises the possibility that altered precipitation could accentuate, or even reverse, the effects of rising temperatures on pest outbreaks.

View Article and Find Full Text PDF

Some plant pathogens manipulate the behavior and performance of their vectors, potentially enhancing pathogen spread. The implications are evolutionary and epidemiological but also economic for pathogens that cause disease in crops. Here we explore with models the effects of vector manipulation on crop yield loss to disease and on the economic returns for vector suppression.

View Article and Find Full Text PDF

Mayweed chamomile () is a globally invasive, troublesome annual weed but knowledge of its genetic diversity, population structure in invaded regions and invasion patterns remains unstudied. Therefore, germplasm from 19 populations (sites) from three geographically distinct invaded regions: the Walla Walla Basin (located in southern Washington) and the Palouse (located in both northern Idaho and eastern Washington), Pacific Northwest, USA and Kashmir Valley, India were grown in the greenhouse for DNA extraction and sequencing. A total of 18 829 single-nucleotide polymorphisms were called and filtered for each of 89 samples.

View Article and Find Full Text PDF

Many animals change feeding habits as they progress through life stages, exploiting resources that vary in space and time. However, complex life histories may bring new risks if rapid environmental change disrupts the timing of these switches. Here, we use abundance times series for a diverse group of herbivorous insects, aphids, to search for trait and environmental characteristics associated with declines.

View Article and Find Full Text PDF

The Wheat Initiative (WI) and the WI Expert Working Group (EWG) for Agronomy (www.wheatinitiative.org) were formed with a collective goal to "coordinate global wheat research efforts to increase wheat production, quality, and sustainability to advance food security and safety under changing climate conditions.

View Article and Find Full Text PDF

Determinants of the host ranges of insect herbivores are important from an evolutionary perspective and also have implications for applications such as biological control. Although insect herbivore host ranges typically are phylogenetically constrained, herbivore preference and performance ultimately are determined by plant traits, including plant secondary metabolites. Where such traits are phylogenetically labile, insect hervivore host ranges are expected to be phylogenetically disjunct, reflecting phenotypic similarities rather than genetic relatedness among potential hosts.

View Article and Find Full Text PDF

Plant viruses can alter the behavior or performance of their arthropod vectors, either indirectly (through effects of virus infection on the host plant) or directly (from virus acquisition by the vector). Given the diversity of plant viruses and their arthropod vectors, the effects for any specific system are not possible to predict. Here, we present experimental evidence that acquisition of maize Iranian mosaic virus (MIMV, genus Nucleorhabdovirus, family Rhabdoviridae) modifies the biological traits of its insect vector, the small brown planthopper (SBPH) Laodelphax striatellus.

View Article and Find Full Text PDF

Herbivores that transmit plant pathogens often share hosts with non-vector herbivores. These co-occurring herbivores can affect vector fitness and behaviour through competition and by altering host plant quality. However, few studies have examined how such interactions may both directly and indirectly influence the spread of a plant pathogen.

View Article and Find Full Text PDF

The pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae), presents a dual threat to commercial pulse growers because it can inflict direct injury through feeding and indirect injury as a vector of two important viruses, Pea enation mosaic virus (PEMV) and Bean leafroll virus (BLRV). A decision support system is needed to help producers manage both of these threats in pulses. To address these gaps in lentil, Lens culinaris (Medikus) (Fabales: Fabaceae), we conducted field experiments near Moscow, Idaho in 2011 and 2012 with three objectives: 1) determine economic injury levels (EILs) for pea aphid in lentil based on the direct effects of their feeding on yield, 2) develop economic guidelines for treating aphids carrying PEMV or BLRV based on the impact on yield of virus inoculation at different times after crop emergence, and 3) provide a framework for using both of these decision tools as part of a comprehensive approach to pea aphid management in lentil.

View Article and Find Full Text PDF

Plant defenses often mediate whether competing chewing and sucking herbivores indirectly benefit or harm one another. Dual-guild herbivory also can muddle plant signals used by specialist natural enemies to locate prey, further complicating the net impact of herbivore-herbivore interactions in naturally diverse settings. While dual-guild herbivore communities are common in nature, consequences for top-down processes are unclear, as chemically mediated tri-trophic interactions are rarely evaluated in field environments.

View Article and Find Full Text PDF

The transmission of insect-borne plant pathogens, including viruses, bacteria, phytoplasmas, and fungi depends upon the abundance and behavior of their vectors. These pathogens should therefore be selected to influence their vectors to enhance their transmission, either indirectly, through the infected host plant, or directly, after acquisition of the pathogen by the vector. Accumulating evidence provides partial support for the occurrence of vector manipulation by plant pathogens, especially for plant viruses, for which a theoretical framework can explain patterns in the specific effects on vector behavior and performance depending on their modes of transmission.

View Article and Find Full Text PDF

Potato leaf roll virus (PLRV) can reduce tuber yield and quality in potato. Green peach aphid (Myzus persicae [Sulzer]) and potato aphid (Macrosiphum euphorbiae [Thomas]) are the two most important potato-colonizing PLRV vectors in the Pacific Northwest. We compared My.

View Article and Find Full Text PDF

Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts.

View Article and Find Full Text PDF

Male-biased aggregations of sugar beet root maggot, Tetanops myopaeformis (Röder) (Diptera: Ulidiidae), flies were observed on utility poles near sugar beet (Beta vulgaris L. [Chenopodiaceae]) fields in southern Idaho; this contrasts with the approximately equal sex ratio typically observed within fields. Peak observation of mating pairs coincided with peak diurnal abundance of flies.

View Article and Find Full Text PDF
Article Synopsis
  • Potato virus Y (PVY) significantly affects potato crop quality and yield in the U.S., with the green peach aphid being the most effective vector, though it may be less common in Idaho compared to other non-potato-colonizing aphids that can come from nearby cereal fields.
  • A field study from 2012-2013 in Idaho investigated how non-colonizing aphids, particularly those from cereal crops, disperse to potato fields as the grains mature and dry down before harvest.
  • Findings showed that cereal aphids were the most numerous and that their population peaked during cereal ripening, correlating with an increase in PVY prevalence in potato fields, highlighting the role of these
View Article and Find Full Text PDF

Since the mid-1990s, Bombus occidentalis (Green) has declined from being one of the most common to one of the rarest bumble bee species in the Pacific Northwest of the United States. Although its conservation status is unresolved, a petition to list this species as endangered or threatened was recently submitted to the U.S.

View Article and Find Full Text PDF

Potato virus Y (PVY) is an economically important and reemerging potato pathogen in North America. PVY infection reduces yield, and some necrotic and recombinant strains render tubers unmarketable. Although PVY(O) is the most prevalent strain in the United States, the necrotic and recombinant strains PVY(NTN) and PVY(N:O) are becoming more widespread.

View Article and Find Full Text PDF

We developed a binomial sequential decision plan that classifies the economic status of nonviruliferous pea aphids, Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae), in commercial dry peas, Pisum sativum L. (Fabales: Fabaceae), in the Palouse region of northern Idaho and eastern Washington state. Relationships between mean pea aphid density per plant (x) and the proportion of aphid-infested plants (Pi) were determined by in situ visual counts of 100 plants on each of 27 seasonal dates during 2011 from early vegetative plant growth (stage V105) to late reproductive growth (stage R207) at two field sites near Moscow, ID.

View Article and Find Full Text PDF

Pathogens and their vectors can interact either directly or indirectly via their shared hosts, with implications for the persistence and spread of the pathogen in host populations. For example, some plant viruses induce changes in host plants that cause the aphids that carry these viruses to settle preferentially on infected plants. Furthermore, relative preference by the vector for infected plants can change to a preference for noninfected plants after virus acquisition by the vector, as has recently been demonstrated in the wheat-Rhopalosiphum padi-Barley yellow dwarf virus pathosystem.

View Article and Find Full Text PDF

Vectors of several economically important plant viruses have been shown to feed or settle preferentially on either infected or noninfected host plants. Recent research has revealed that the feeding or settling preferences of insect vectors can depend on whether a vector is inoculative (carries the virus). To explore the implications of such changes in vector preference for the spread of the pathogen, we create a basic model of disease spread, incorporating vector preferences for infected and noninfected plants dependent on whether the vector is inoculative.

View Article and Find Full Text PDF

Hybridization is an important evolutionary mechanism that can increase the fitness and adaptive potential of populations. A growing body of evidence supports its importance as a key factor contributing to rapid evolution in invasive species, but the effects of hybridization have rarely been assessed in intentionally introduced biological control agents. We investigated hybrids between a Swiss and an Italian population of the beetle, Longitarsus jacobaeae, a biological control agent of Jacobaea vulgaris, by reciprocally crossing individuals in the laboratory.

View Article and Find Full Text PDF

Pathogens and parasites can induce changes in host or vector behavior that enhance their transmission. In plant systems, such effects are largely restricted to vectors, because they are mobile and may exhibit preferences dependent upon plant host infection status. Here we report the first evidence that acquisition of a plant virus directly alters host selection behavior by its insect vector.

View Article and Find Full Text PDF