Philos Trans A Math Phys Eng Sci
June 2023
Quantifying the strength and efficiency of the Southern Ocean biological carbon pump (BCP) and its response to predicted changes in the Earth's climate is fundamental to our ability to predict long-term changes in the global carbon cycle and, by extension, the impact of continued anthropogenic perturbation of atmospheric CO. There is little agreement, however, in climate model projections of the sensitivity of the Southern Ocean BCP to climate change, with a lack of consensus in even the direction of predicted change, highlighting a gap in our understanding of a major planetary carbon flux. In this review, we summarize relevant research that highlights the important role of fine-scale dynamics (both temporal and spatial) that link physical forcing mechanisms to biogeochemical responses that impact the characteristics of the seasonal cycle of phytoplankton and by extension the BCP.
View Article and Find Full Text PDFThe Southern Ocean is a major sink of anthropogenic CO and an important foraging area for top trophic level consumers. However, iron limitation sets an upper limit to primary productivity. Here we report on a considerably dense late summer phytoplankton bloom spanning 9000 km in the open ocean of the eastern Weddell Gyre.
View Article and Find Full Text PDFSouthern Ocean primary productivity is principally controlled by adjustments in light and iron limitation, but the spatial and temporal determinants of iron availability, accessibility, and demand are poorly constrained, which hinders accurate long-term projections. We present a multidecadal record of phytoplankton photophysiology between 1996 and 2022 from historical in situ datasets collected by Biogeochemical Argo (BGC-Argo) floats and ship-based platforms. We find a significant multidecadal trend in irradiance-normalized nonphotochemical quenching due to increasing iron stress, with concomitant declines in regional net primary production.
View Article and Find Full Text PDFStudying the biogeochemistry of the Southern Ocean using remote sensing relies on accurate interpretation of ocean colour through bio-optical and biogeochemical relationships between quantities and properties of interest. During the Antarctic Circumnavigation Expedition of the 2016/2017 Austral Summer, we collected a spatially comprehensive dataset of phytoplankton pigment concentrations, particulate absorption and particle size distribution and compared simple bio-optical and particle property relationships as a function of chlorophyll a. Similar to previous studies we find that the chlorophyll-specific phytoplankton absorption coefficient is significantly lower than in other oceans at comparable chlorophyll concentrations.
View Article and Find Full Text PDFA multi-excitation fluorometer (MFL, JFE Advantech Co., Ltd.), originally designed to discriminate between phytoplankton species present within a population, has been redirected for use in fluorescence quantum yield (FQY) determination.
View Article and Find Full Text PDF