Helicases are present in viruses, prokaryotes, and eukaryotes, and several of them have been linked to human diseases. Here we study the role of one putative DEAD-box RNA helicase, MrDb (DDX18), in tumor cells. We show that MrDb is a nucleolar protein ubiquitously expressed in tumor cells and that it is more abundantly expressed in proliferating cells.
View Article and Find Full Text PDFHelicases are ubiquitous enzymes, which utilize the energy liberated during nucleotide triphosphate hydrolysis to separate double-stranded nucleic acids into single strands. These enzymes are very attractive targets for the development of new antibacterial compounds. The PcrA DNA helicase from Staphylococcus aureus is a good candidate for drug discovery.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2006
Helicases contain conserved motifs involved in ATP/magnesium/nucleic acid binding and in the mechanisms coupling nucleotide hydrolysis to duplex unwinding. None of these motifs are located at the adenine-binding pocket of the protein. We show here that the superfamily I helicase, helicase IV from Escherichia coli, utilizes a conserved glutamine and conserved aromatic residue to interact with ATP.
View Article and Find Full Text PDFHelicases form an attractive protein family for drug discovery because they are involved in various human diseases. In this report, we show that it is possible to inhibit both the ATPase and the helicase activities of a DNA helicase with dibenzothiepins that bind at its nucleic acid binding site. These results suggest a drug discovery strategy to inhibit DNA helicases.
View Article and Find Full Text PDFThe human general transcription factor TFIIH is involved in both transcription and DNA repair. We have identified a structural domain in the core subunit of TFIIH, p62, which is absolutely required for DNA repair activity through the nucleotide excision repair pathway. Using coimmunoprecipitation experiments, we showed that this activity involves the interaction between the N-terminal domain of p62 and the 3' endonuclease XPG, a major component of the nucleotide excision repair machinery.
View Article and Find Full Text PDFThe Rift Valley fever virus (RVFV) is the causative agent of fatal hemorrhagic fever in humans and acute hepatitis in ruminants. We found that infection by RVFV leads to a rapid and drastic suppression of host cellular RNA synthesis that parallels a decrease of the TFIIH transcription factor cellular concentration. Using yeast two hybrid system, recombinant technology, and confocal microscopy, we further demonstrated that the nonstructural viral NSs protein interacts with the p44 component of TFIIH to form nuclear filamentous structures that also contain XPB subunit of TFIIH.
View Article and Find Full Text PDFMutations in the XPD gene result in xeroderma pigmentosum (XP) and trichothiodystrophy (TTD), the phenotypes of which are often intricate. To understand the genotype/phenotype relationship, we engineered recombinant TFIIHs in which XPD subunits carry amino acid changes found in XPD patients. We demonstrate that all the XPD mutations are detrimental for XPD helicase activity, thus explaining the NER defect.
View Article and Find Full Text PDFTo counteract the deleterious effects of genotoxic injury, cells have set up a sophisticated network of DNA repair pathways. We show that Gal4-VP16 and RAR transcriptional activators stimulate nucleotide excision repair (NER). This DNA repair activation is not coupled to transcription since it occurs in Cockayne syndrome cells (which are transcription-coupled repair deficient) and is observed in vitro in the presence of alpha-amanitin and in the absence of the basal transcription factors.
View Article and Find Full Text PDFTo further our understanding of the transcription/DNA repair factor TFIIH, we investigated the role of its p52 subunit in TFIIH function. Using a completely reconstituted in vitro transcription or nucleotide excision repair (NER) system, we show that deletion of the C-terminal region of p52 results in a dramatic reduction of TFIIH NER and transcription activities. This mutation prevents promoter opening and has no effect on the other enzymatic activities of TFIIH.
View Article and Find Full Text PDF