Publications by authors named "Sandy B Serizier"

The death and clearance of nurse cells is a consequential milestone in Drosophila melanogaster oogenesis. In preparation for oviposition, the germline-derived nurse cells bequeath to the developing oocyte all their cytoplasmic contents and undergo programmed cell death. The death of the nurse cells is controlled non-autonomously and is precipitated by epithelial follicle cells of somatic origin acquiring a squamous morphology and acidifying the nurse cells externally.

View Article and Find Full Text PDF

Cell death is an important process in the body, as it occurs throughout every tissue during development, disease, and tissue regeneration. Phagocytes are responsible for clearing away dying cells and are typically characterized as either professional or nonprofessional phagocytes. Professional phagocytes, such as macrophages, are found in nearly every part of the body while nonprofessional phagocytes, such as epithelial cells, are found in every tissue type.

View Article and Find Full Text PDF

The last step of cell death is cell clearance, a process critical for tissue homeostasis. For efficient cell clearance to occur, phagocytes and dead cells need to reciprocally signal to each other. One important phenomenon that is under-investigated, however, is that phagocytes not only engulf corpses but contribute to cell death progression.

View Article and Find Full Text PDF

Programmed cell death and cell corpse clearance are an essential part of organismal health and development. Cell corpses are often cleared away by professional phagocytes such as macrophages. However, in certain tissues, neighboring cells known as nonprofessional phagocytes can also carry out clearance functions.

View Article and Find Full Text PDF

For half of a century, it has been known that non-professional phagocytes, such as fibroblasts, endothelial, and epithelial cells, are capable of efferocytosis (engulfment of apoptotic cells). Non-professional phagocytes differ from professional phagocytes in the range and efficiency of engulfment. Much of the recognition and underlying signaling machinery between non-professional and professional phagocytes is the same, but it is not known how the engulfment capacity of non-professional phagocytes is controlled.

View Article and Find Full Text PDF

Programmed cell death (PCD) is essential for health and development. Generally, the last step of PCD is clearance, or engulfment, by phagocytes. Engulfment can be broken down into five basic steps: attraction of the phagocyte, recognition of the dying cell, internalization, phagosome maturation, and acidification of the engulfed material.

View Article and Find Full Text PDF

Prolactin (PRL) is a well-known regulator of ion and water transport within osmoregulatory tissues across vertebrate species, yet how PRL acts on some of its target tissues remains poorly understood. Using zebrafish as a model, we show that ionocytes in the gill directly respond to systemic PRL to regulate mechanisms of ion uptake. Ion-poor conditions led to increases in the expression of PRL receptor (prlra), Na(+)/Cl(-) cotransporter (ncc; slc12a10.

View Article and Find Full Text PDF