The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), sparked an international debate on effective ways to prevent and treat the virus. Specifically, there were many varying opinions on the use of ivermectin (IVM) throughout the world, with minimal research to support either side. IVM is an FDA-approved antiparasitic drug that was discovered in the 1970s and was found to show antiviral activity.
View Article and Find Full Text PDFDowny mildew (caused by ) and gray mold (caused by ) are fungal diseases that significantly impact grape production globally. Cytochrome b plays a significant role in the mitochondrial respiratory chain of the two fungi that cause these diseases and is a key target for quinone outside inhibitor (QoI)-based fungicide development. Since the mode of action (MOA) of QoI fungicides is restricted to a single active site, the risk of developing resistance to these fungicides is deemed high.
View Article and Find Full Text PDFA novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the cause of the COVID-19 pandemic that originated in China in December 2019. Although extensive research has been performed on SARS-CoV-2, the binding behavior of spike (S) protein and receptor binding domain (RBD) of SARS-CoV-2 at different environmental conditions have yet to be studied. The objective of this study is to investigate the effect of temperature, fatty acids, ions, and protein concentration on the binding behavior and rates of association and dissociation between the S protein and RBD of SARS-CoV-2 and the hydrophobic aminopropylsilane (APS) biosensors using biolayer interferometry (BLI) validated with molecular dynamics simulation.
View Article and Find Full Text PDFLow-temperature methane oxidation is one of the greatest challenges in energy research. Although methane monooxygenase (MMO) does this catalysis naturally, how to use this biocatalyst in a fuel cell environment where the electrons generated during the oxidation process is harvested and used for energy generation has not yet been investigated. A key requirement to use this enzyme in a fuel cell is wiring of the active site of the enzyme directly to the supporting electrode.
View Article and Find Full Text PDFBioresour Technol
November 2011
In this study, glucose, a primary building-block of biomass was subjected to secondary pyrolysis in a reactor that was retrofitted subsequent to a primary micro-pyrolysis reactor. It was observed that incorporation of a secondary reactor resulted in producing significant amounts of gasoline range hydrocarbons. The hydrocarbon yields improved further as a result of increasing pyrolysis reactor pressure and temperatures.
View Article and Find Full Text PDFA fast pyrolysis process produces a high yield of liquid (a.k.a.
View Article and Find Full Text PDF