Introduction: The biosynthesis of secondary metabolites like anthocyanins is often governed by metabolic gene clusters (MGCs) in the plant ancestral genome. However, the existence of gene clusters specifically regulating anthocyanin accumulation in certain organs is not well understood.
Methods And Results: In this study, we identify MGCs linked to the coloration of cotton reproductive organs, such as petals, spots, and fibers.
Unlabelled: Weed competition seriously threatens the yield of alfalfa, the most important forage legume worldwide, thus generating herbicide-resistant alfalfa varieties is becoming a necessary cost-effective strategy to assist farmers for weed control. Here, we report the co-expression of plant codon-optimized forms of () and () genes, in alfalfa, via -mediated transformation. We established that the - co-expression alfalfa lines were able to tolerate up to tenfold higher commercial usage of glyphosate and produced approximately ten times lower glyphosate residues than the conventional cultivar.
View Article and Find Full Text PDFTrehalose metabolism plays an important role in plant growth and response to abiotic stress. Trehalose-6-phosphate (Tre6P) can help regulate sugar homeostasis and act as an indication signal for intracellular sugar levels. Crop productivity can be greatly increased by altering the metabolic level of endogenous trehalose in plants, which can optimize the source-sink connection.
View Article and Find Full Text PDFBackground: Anthocyanins, a class of specialized metabolites that are ubiquitous among plant species, have attracted a great deal of attention from plant biologists due to their chemical diversity. They confer purple, pink, and blue colors that attract pollinators, protect plants from ultraviolet (UV) radiation, and scavenge reactive oxygen species (ROS) to facilitate plant survival during abiotic stress. In a previous study, we identified Beauty Mark (BM) in Gossypium barbadense as an activator of the anthocyanin biosynthesis pathway; this gene also directly led to the formation of a pollinator-attracting purple spot.
View Article and Find Full Text PDFPatatin-related phospholipase A genes were involved in the response of Gossypium hirsutum to drought and salt tolerance. pPLA (patatin-related phospholipase A) is a key enzyme that catalyzes the initial step of lipid hydrolysis, which is involved in biological processes, such as drought, salt stress, and freezing injury. However, a comprehensive analysis of the pPLA gene family in cotton, especially the role of pPLA in the response to drought and salt tolerance, has not been reported so far.
View Article and Find Full Text PDFThe soil in Yuncheng Salt Lake has serious salinization and the biogeographic environment affects the composition and distribution of special halophilic and salt-tolerant microbial communities in this area. Therefore, this study collected soils at distances of 15, 30, and 45 m from the Salt Lake and used non-saline soil (60 m) as a control to explore the microbial composition and salt tolerance mechanisms using metagenomics technology. The results showed that the dominant species and abundance of salt-tolerant microorganisms changed gradually with distance from Salt Lake.
View Article and Find Full Text PDFPlant adaptation to challenging environmental conditions around the world has made root growth and development an important research area for plant breeders and scientists. Targeted manipulation of root system architecture (RSA) to increase water and nutrient use efficiency can minimize the adverse effects of climate change on crop production. However, phenotyping of RSA is a major bottleneck since the roots are hidden in the soil.
View Article and Find Full Text PDFDrought and high salinity are key limiting factors for cotton quality and yield. Therefore, research is increasingly focused on mining effective genes to improve the stress resistance of cotton. Few studies have demonstrated that bacterial () overexpression can enhance plants stress tolerance.
View Article and Find Full Text PDFPlant trichomes are specialized epidermal cells that are widely distributed on plant aerial tissues. The initiation and progression of trichomes are controlled in a coordinated sequence of multiple molecular events. During the past decade, major breakthroughs in the molecular understanding of trichome development were achieved through the characterization of various trichomes defective mutants and trichome-associated genes, which revealed a highly complex molecular regulatory network underlying plant trichome development.
View Article and Find Full Text PDFThe timing of flowering is a key determinant for plant reproductive. It has been demonstrated that microRNAs (miRNAs) play an important role in transition from the vegetative to reproductive stage in cotton; however, knowledge remains limited about the regulatory role of miRNAs involved in flowering time regulation in cotton. To elucidate the molecular basis of miRNAs in response to flowering time in cotton, we performed high-throughput small RNA sequencing at the fifth true leaf stage.
View Article and Find Full Text PDFCrop molecular breeding primarily focuses on increasing the trait of plant yield. An elongator-associated protein, , is closely associated with plant biomass and yield. is involved in developmental processes of most organs, including the leaf, root, flower, and seed, through regulating cell division and differentiation.
View Article and Find Full Text PDFHybrid crop varieties have been repeatedly demonstrated to produce significantly higher yields than their parental lines; however, the low efficiency and high cost of hybrid seed production has limited the broad exploitation of heterosis for cotton production. One option for increasing the yield of hybrid seed is to improve pollination efficiency by insect pollinators. Here, we report the molecular cloning and characterization of a semidominant gene, Beauty Mark (BM), which controls purple spot formation at the base of flower petals in the cultivated tetraploid cotton species Gossypium barbadense.
View Article and Find Full Text PDFThe transcription of GhAG2 was strongly enhanced by glyphosate treatment. Overexpression of GhAG2 could improve plant tolerance to salt and salicylic acid stress. Although glyphosate has been widely used as an herbicide over the past decade owing to its high efficacy on weed controls and worldwide commercialization of glyphosate-resistant crops, little is known about the glyphosate-induced responses and transcriptional changes in cotton plants.
View Article and Find Full Text PDFThe authors wish to make the following corrections to their paper [...
View Article and Find Full Text PDFAllotetraploid cotton ( and ) are cultivated worldwide for its white fiber. For centuries, conventional breeding approaches increase cotton yield at the cost of extensive erosion of natural genetic variability. Sea Island cotton () is known for its superior fiber quality, but show poor adaptability as compared to Upland cotton.
View Article and Find Full Text PDF(Bt) is a Gram negative soil bacterium. This bacterium secretes various proteins during different growth phases with an insecticidal potential against many economically important crop pests. One of the important families of Bt proteins is vegetative insecticidal proteins (Vip), which are secreted into the growth medium during vegetative growth.
View Article and Find Full Text PDFCotton is an important economic crop affected by different abiotic stresses at different developmental stages. Salinity limits the growth and productivity of crops worldwide. Na/H antiporters play a key role during the plant development and in its tolerance to salt stress.
View Article and Find Full Text PDFGenetic modification plays a vital role in breeding new crops with excellent traits. Almost all the current genetic modification methods require regeneration from tissue culture, involving complicated, long and laborious processes. In particular, many crop species such as cotton are difficult to regenerate.
View Article and Find Full Text PDFBackground: The traditional method of visualizing gene annotation data in JBrowse is converting GFF3 files to JSON format, which is time-consuming. The latest version of JBrowse supports rendering sorted GFF3 files indexed by tabix, a novel strategy that is more convenient than the original conversion process. However, current tools available for GFF3 file sorting have some limitations and their sorting results would lead to erroneous rendering in JBrowse.
View Article and Find Full Text PDFThe sensitivity to abscisic acid (ABA) by its receptors, pyrabactin resistance-like proteins (PYLs), is considered a most important factor in activating the ABA signal pathway in response to abiotic stress. However, it is still unknown which PYL is the crucial ABA receptor mediating response to drought stress in cotton ( L.).
View Article and Find Full Text PDFBackground: Cotton (Gossypium spp.) is the most important fiber and oil crop in the world. With the emergence of huge -omics data sets, it is essential to have an integrated functional genomics database that allows worldwide users to quickly and easily fetch and visualize genomic information.
View Article and Find Full Text PDF