Publications by authors named "Sandro Wimberger"

We study the robustness of different sweep protocols for accelerated adiabaticity following in the presence of static errors and of dissipative and dephasing phenomena. While in the noise-free case, counterdiabatic driving is, by definition, insensitive to the form of the original sweep function, this property may be lost when the quantum system is open. We indeed observe that, according to the decay and dephasing channels investigated here, the performance of the system becomes highly dependent on the sweep function.

View Article and Find Full Text PDF

The realization of effective Hamiltonians featuring many-body interactions beyond pairwise coupling would enable the quantum simulation of central models underpinning topological physics and quantum computation. We overcome crucial limitations of perturbative Floquet engineering and discuss the highly accurate realization of a purely three-body Hamiltonian in superconducting circuits and molecular nanomagnets.

View Article and Find Full Text PDF

The difficulty in combining high fidelity with fast operation times and robustness against sources of noise is the central challenge of most quantum control problems, with immediate implications for the realization of quantum devices. We theoretically propose a protocol, based on the widespread stimulated Raman adiabatic passage technique, which achieves these objectives for quantum state transfers in generic three-level systems. Our protocol realizes accelerated adiabatic following through the application of additional control fields on the optical excitations.

View Article and Find Full Text PDF

We present a discrete-time, one-dimensional quantum walk based on the entanglement between the momentum of ultracold rubidium atoms (the walk space) and two internal atomic states (the "coin" degree of freedom). Our scheme is highly flexible and can provide a platform for a wide range of applications such as quantum search algorithms, the observation of topological phases, and the realization of walks with higher dimensionality. Along with the investigation of the quantum-to-classical transition, we demonstrate the distinctive features of a quantum walk and contrast them to those of its classical counterpart.

View Article and Find Full Text PDF

Synchronization and entanglement constitute fundamental collective phenomena in multi-unit classical and quantum systems, respectively, both equally implying coordinated system states. Here, we present a direct link for a class of isolated quantum many-body systems, demonstrating that synchronization emerges as an intrinsic system feature. Intriguingly, quantum coherence and entanglement arise persistently through the same transition as synchronization.

View Article and Find Full Text PDF

We propose several schemes to realize a tractor beam effect for ultracold atoms in the vicinity of a few-mode nanowaveguide. Atoms trapped near the waveguide are transported in a direction opposite to the guided mode propagation direction. We analyse three specific examples for ultracold (23)Na atoms trapped near a specific nanowaveguide (i.

View Article and Find Full Text PDF

We revisit fidelity as a measure for the stability and the complexity of the quantum motion of single-and many-body systems. Within the context of cold atoms, we present an overview of applications of two fidelities, which we call static and dynamical fidelity, respectively. The static fidelity applies to quantum problems which can be diagonalized since it is defined via the eigenfunctions.

View Article and Find Full Text PDF

We report on the observation of negative differential conductivity (NDC) in a quantum transport device for neutral atoms employing a multimode tunneling junction. The system is realized with a Bose-Einstein condensate loaded in a one-dimensional optical lattice with high site occupancy. We induce an initial difference in chemical potential at one site by local atom removal.

View Article and Find Full Text PDF

Kicked atoms under a constant Stark or gravity field are investigated for experimental setups with cold and ultracold atoms. The parametric stability of the quantum dynamics is studied using the fidelity. In the case of a quantum resonance, it is shown that the behavior of the fidelity depends on arithmetic properties of the gravity parameter.

View Article and Find Full Text PDF

Using a semiclassical ansatz we analytically predict for the fidelity of delta-kicked rotors the occurrence of revivals and the disappearance of intermediate revival peaks arising from the breaking of a symmetry in the initial conditions. A numerical verification of the predicted effects is given and experimental ramifications are discussed.

View Article and Find Full Text PDF

We show that a scaling law exists for the near-resonant dynamics of cold kicked atoms in the presence of a randomly fluctuating pulse amplitude. Analysis of a quasiclassical phase-space representation of the quantum system with noise allows a new scaling law to be deduced. The scaling law and associated stability are confirmed by comparison with quantum simulations and experimental data.

View Article and Find Full Text PDF

A perturbative model is studied for the tunneling of many-particle states from the ground band to the first excited energy band, mimicking Landau-Zener decay for ultracold, spinless atoms in quasi-one-dimensional optical lattices subjected to a tunable tilting force. The distributions of the computed tunneling rates provide an independent and experimentally accessible signature of the regular-chaotic transition in the strongly correlated many-body dynamics of the ground band.

View Article and Find Full Text PDF

We present a quantitative semiclassical theory for the decay of nondispersive electronic wave packets in driven, ionizing Rydberg systems. Statistically robust quantities are extracted combining resonance-assisted tunneling with subsequent transport across chaotic phase space and a final ionization step.

View Article and Find Full Text PDF

We present mean energy measurements for the atom optics kicked rotor as the kicking period tends to zero. A narrow resonance is observed marked by quadratic energy growth, in parallel with a complete freezing of the energy absorption away from the resonance peak. Both phenomena are explained by classical means, taking proper account of the atoms' initial momentum distribution.

View Article and Find Full Text PDF

Our realistic numerical results show that the fundamental and higher-order quantum resonances of the delta-kicked rotor are observable in state-of-the-art experiments with a Bose condensate in a shallow harmonic trap, kicked by a spatially periodic optical lattice. For stronger confinement, interaction-induced destruction of the resonant motion of the kicked harmonic oscillator is predicted.

View Article and Find Full Text PDF

We analyze the effects of a nonlinear cubic perturbation on the delta-kicked rotor. We consider two different models, in which the nonlinear term acts either in the position or in the momentum representation. We numerically investigate the modifications induced by the nonlinearity in the quantum transport in both localized and resonant regimes and a comparison between the results for the two models is presented.

View Article and Find Full Text PDF

The quantum resonances occurring with delta-kicked particles are studied with the help of a fictitious classical limit, establishing a direct correspondence between the nearly resonant quantum motion and the classical resonances of a related system. A scaling law which characterizes the structure of the resonant peaks is derived and numerically demonstrated.

View Article and Find Full Text PDF

The effect of decoherence, induced by spontaneous emission, on the dynamics of cold atoms periodically kicked by an optical lattice is experimentally and theoretically studied. Ideally, the mean energy growth is essentially unaffected by weak decoherence, but the resonant momentum distributions are fundamentally altered. It is shown that experiments are inevitably sensitive to certain nontrivial features of these distributions, in a way that explains the puzzle of the observed enhancement of resonances by decoherence [Phys.

View Article and Find Full Text PDF

We provide the first statistical analysis of the decay rates of strongly driven 3D atomic Rydberg states. The distribution of the rates exhibits universal features due to Anderson localization, while universality of the time dependent decay requires particular initial conditions.

View Article and Find Full Text PDF