Publications by authors named "Sandro Stringari"

We propose a protocol to excite the Goldstone modes of a supersolid dipolar Bose-Einstein condensed gas confined in a ring geometry. By abruptly removing an applied periodic modulation proportional to cos(φ), where φ is the azimuthal angle, we explore the resulting oscillations of the gas by solving the extended Gross-Pitaevskii equation. The value of the two longitudinal sound velocities exhibited in the supersolid phase are analyzed using the hydrodynamic theory of supersolids at zero temperature, which explicitly takes into account both the superfluid and the crystal nature of the system.

View Article and Find Full Text PDF

Despite ground-breaking observations of supersolidity in spin-orbit-coupled Bose-Einstein condensates, until now the dynamics of the emerging spatially periodic density modulations has been vastly unexplored. Here, we demonstrate the nonrigidity of the density stripes in such a supersolid condensate and explore their dynamic behavior subject to spin perturbations. We show both analytically in infinite systems and numerically in the presence of a harmonic trap how spin waves affect the supersolid's density profile in the form of crystal waves, inducing oscillations of the periodicity as well as the orientation of the fringes.

View Article and Find Full Text PDF

Supersolidity is deeply connected with the emergence of Goldstone modes, reflecting the spontaneous breaking of both phase and translational symmetry. Here, we propose accessible signatures of these modes in harmonically trapped spin-orbit-coupled Bose-Einstein condensates, where supersolidity appears in the form of stripes. By suddenly changing the trapping frequency, an axial breathing oscillation is generated, whose behavior changes drastically at the critical Raman coupling.

View Article and Find Full Text PDF

The miscibility condition for a binary mixture of two interacting Bose-Einstein condensates is shown to be deeply affected by interaction driven thermal fluctuations. These give rise to a first order phase transition to a demixed phase with full spatial separation of the two condensates, even if the mixture is miscible at zero temperature. Explicit predictions for the isothermal compressibility, the spin susceptibility, and the phase transition temperature T_{M} are obtained in the framework of Popov theory, which properly includes beyond mean-field quantum and thermal fluctuations in both the spin and density channels.

View Article and Find Full Text PDF

Using linear response theory within the random phase approximation, we investigate the propagation of sound in a uniform two dimensional (2D) Bose gas in the collisionless regime. We show that the sudden removal of a static density perturbation produces a damped oscillatory behavior revealing that sound can propagate also in the absence of collisions, due to mean-field interaction effects. We provide explicit results for the sound velocity and damping as a function of temperature, pointing out the crucial role played by Landau damping.

View Article and Find Full Text PDF

By applying a position-dependent detuning to a spin-orbit-coupled Hamiltonian with equal Rashba and Dresselhaus coupling, we exploit the behavior of the angular momentum of a harmonically trapped Bose-Einstein condensed atomic gas and discuss the distinctive role of its canonical and spin components. By developing the formalism of spinor hydrodynamics, we predict the precession of the dipole oscillation caused by the synthetic rotational field, in analogy with the precession of the Foucault pendulum, the excitation of the scissors mode, following the sudden switching off of the detuning, and the occurrence of Hall-like effects. When the detuning exceeds a critical value, we observe a transition from a vortex free, rigidly rotating quantum gas to a gas containing vortices with negative circulation which results in a significant reduction of the total angular momentum.

View Article and Find Full Text PDF

We report on the observation of the scissors mode of a single dipolar quantum droplet. The existence of this mode is due to the breaking of the rotational symmetry by the dipole-dipole interaction, which is fixed along an external homogeneous magnetic field. By modulating the orientation of this magnetic field, we introduce a new spectroscopic technique for studying dipolar quantum droplets.

View Article and Find Full Text PDF

The spin dynamics of a harmonically trapped Bose-Einstein condensed binary mixture of sodium atoms is experimentally investigated at finite temperature. In the collisional regime the motion of the thermal component is shown to be damped because of spin drag, while the two condensates exhibit a counterflow oscillation without friction, thereby providing direct evidence for spin superfluidity. Results are also reported in the collisionless regime where the spin components of both the condensate and thermal part oscillate without damping, their relative motion being driven by a mean-field effect.

View Article and Find Full Text PDF

By developing the hydrodynamic theory of spinor superfluids, we calculate the moment of inertia of a harmonically trapped Bose-Einstein condensate with spin-orbit coupling. We show that the velocity field associated with the rotation of the fluid exhibits diffused vorticity, in contrast to the irrotational behavior characterizing a superfluid. Both Raman-induced and Rashba spin-orbit couplings are considered.

View Article and Find Full Text PDF

We study the zero-temperature phase diagram of a spin-orbit-coupled Bose-Einstein condensate of spin 1, with equally weighted Rashba and Dresselhaus couplings. Depending on the antiferromagnetic or ferromagnetic nature of the interactions, we find three kinds of striped phases with qualitatively different behaviors in the modulations of the density profiles. Phase transitions to the zero-momentum and the plane-wave phases can be induced in experiments by independently varying the Raman coupling strength and the quadratic Zeeman field.

View Article and Find Full Text PDF

We study solitary waves of polarization (magnetic solitons) in a two-component Bose gas with slightly unequal repulsive intra- and interspin interactions. In experimentally relevant conditions we obtain an analytical solution which reveals that the width and the velocity of magnetic solitons are explicitly related to the spin healing length and the spin sound velocity of the Bose mixture, respectively. We calculate the profiles, the energy, and the effective mass of the solitons in the absence of external fields and investigate their oscillation in a harmonic trap where the oscillation period is calculated as a function of the oscillation amplitude.

View Article and Find Full Text PDF

We calculate the temperature dependence of the first and second sound velocities in the superfluid phase of a 2D dilute Bose gas by solving Landau's two fluid hydrodynamic equations. We predict the occurrence of a significant discontinuity in both velocities at the critical temperature, as a consequence of the jump of the superfluid density characterizing the Berezinskii-Kosterlitz-Thouless transition. The key role of the thermal expansion coefficient is discussed.

View Article and Find Full Text PDF

Using Bogoliubov theory we calculate the excitation spectrum of a spinor Bose-Einstein condensed gas with an equal Rashba and Dresselhaus spin-orbit coupling in the stripe phase. The emergence of a double gapless band structure is pointed out as a key signature of Bose-Einstein condensation and of the spontaneous breaking of translational invariance symmetry. In the long wavelength limit the lower and upper branches exhibit, respectively, a clear spin and density nature.

View Article and Find Full Text PDF

Superfluidity is a macroscopic quantum phenomenon occurring in systems as diverse as liquid helium and neutron stars. It occurs below a critical temperature and leads to peculiar behaviour such as frictionless flow, the formation of quantized vortices and quenching of the moment of inertia. Ultracold atomic gases offer control of interactions and external confinement, providing unique opportunities to explore superfluid phenomena.

View Article and Find Full Text PDF

We provide a joint theoretical and experimental investigation of the temperature dependence of the collective oscillations of first sound nature exhibited by a highly elongated harmonically trapped Fermi gas at unitarity, including the region below the critical temperature for superfluidity. Differently from the lowest axial breathing mode, the hydrodynamic frequencies of the higher-nodal excitations show a temperature dependence, which is calculated starting from Landau two-fluid theory and using the available experimental knowledge of the equation of state. The experimental results agree with high accuracy with the predictions of theory and provide the first evidence for the temperature dependence of the collective frequencies near the superfluid phase transition.

View Article and Find Full Text PDF

We consider a spin-orbit coupled configuration of spin-1/2 interacting bosons with equal Rashba and Dresselhaus couplings. The phase diagram of the system at T=0 is discussed with special emphasis on the role of the interaction treated in the mean-field approximation. For a critical value of the density and of the Raman coupling we predict the occurrence of a characteristic tricritical point separating the spin mixed, the phase separated, and the zero momentum states of the Bose gas.

View Article and Find Full Text PDF

We discuss the spin fluctuations and the role played by the magnetic susceptibility in an atomic Fermi gas interacting with a positive scattering length. Both thermal and zero-temperature quantum fluctuations are considered. Using a sum rule approach and recent ab initio Monte Carlo results for the magnetic susceptibility of uniform matter, we provide explicit predictions for the frequency of the spin dipole oscillation of a gas trapped by a harmonic potential and discuss the deviations from the ideal gas behavior when the system approaches the ferromagnetic transition.

View Article and Find Full Text PDF

We investigate the force acting between two parallel plates held at different temperatures. The force reproduces, as limiting cases, the well-known Casimir-Lifshitz surface-surface force at thermal equilibrium and the surface-atom force out of thermal equilibrium recently derived by M. Antezza et al.

View Article and Find Full Text PDF

We propose a physical system allowing one to experimentally observe the distribution of the complex zeros of a random polynomial. We consider a degenerate, rotating, quasi-ideal atomic Bose gas prepared in the lowest Landau level. Thermal fluctuations provide the randomness of the bosonic field and of the locations of the vortex cores.

View Article and Find Full Text PDF

The Casimir-Polder-Lifshitz force felt by an atom near the surface of a substrate is calculated out of thermal equilibrium in terms of the dielectric function of the material and of the atomic polarizability. The new force decays like 1/z3 at large distances (i.e.

View Article and Find Full Text PDF

The dynamic behavior of a Fermi gas confined in a deformed trap rotating at low angular velocity is investigated in the framework of hydrodynamic theory. The differences exhibited by a normal gas in the collisional regime and a superfluid are discussed. Special emphasis is given to the collective oscillations excited when the deformation of the rotating trap is suddenly removed or when the rotation is suddenly stopped.

View Article and Find Full Text PDF