Publications by authors named "Sandro Mengali"

This paper reports on a compact and lightweight sensor for analysis of gases/vapors by means of a MEMS-based pre-concentrator coupled to a miniaturized infrared absorption spectroscopy (IRAS) module. The pre-concentrator was utilized to sample and trap vapors in a MEMS cartridge filled with sorbent material and to release them once concentrated by fast thermal desorption. It was also equipped with a photoionization detector for in-line detection and monitoring of the sampled concentration.

View Article and Find Full Text PDF

This paper reports on a compact, portable, and selective chemical sensor for hazardous vapors at trace levels, which is under development and validation within the EU project H2020 "RISEN". Starting from the prototype developed for a previous EU project, here, we implemented an updated two-stage purge and trap vapor pre-concentration system, a more compact MEMS- based fast gas-chromatographic separation module (Compact-GC), a new miniaturized quartz-enhanced photoacoustic spectroscopy (QEPAS) detector, and a new compact laser source. The system provides two-dimensional selectivity combining GC retention time and QEPAS spectral information and was specifically designed to be rugged, portable, suitable for on-site analysis of a crime scene, with accurate response in few minutes and in the presence of strong chemical background.

View Article and Find Full Text PDF

Starting from Quartz-Enhanced Photo-Acoustic Spectroscopy (QEPAS), we have explored the potential of a tightly linked method of gas/vapor sensing, from now on referred to as Tuning-Fork-Enhanced Photo-Acoustic Spectroscopy (TFEPAS). TFEPAS utilizes a non-piezoelectric metal or dielectric tuning fork to transduce the photoacoustic excitation and an optical interferometric readout to measure the amplitude of the tuning fork vibration. In particular, we have devised a solution based on Additive Manufacturing (AM) for the Absorption Detection Module (ADM).

View Article and Find Full Text PDF

Smart radiative cooling devices based on thermochromic materials such as vanadium dioxide (VO) are of practical interest for temperature regulation and artificial homeostasis, i.e., maintaining stable equilibrium conditions for survival, both in terrestrial and space applications.

View Article and Find Full Text PDF

This paper reports on a portable selective chemical sensor for hazardous vapors at trace levels, which combines a two-stage purge and trap vapor pre-concentration system, a Micro-Electro-Mechanical-System (MEMS) based fast gas-chromatographic (FAST-GC) separation column and a miniaturized quartz-enhanced photoacoustic spectroscopy (QEPAS) detector. The integrated sensing system provides two-dimensional selectivity combining GC retention time and QEPAS spectral information, and was specifically designed to be rugged and suitable to be deployed on unmanned robotic ground vehicles. This is the first demonstration of a miniaturized QEPAS device used as spectroscopic detector downstream of a FAST-GC separation column, enabling real-world analyses in dirty environments with response time of a few minutes.

View Article and Find Full Text PDF