Publications by authors named "Sandro Matosevic"

Wilms' tumor (WT1), a transcription factor highly expressed in various leukemias and solid tumors, is a highly specific intracellular tumor antigen, requiring presentation through complexation with HLA-restricted peptides.. WT1-derived epitopes are able to assemble with MHC-I and thereby be recognized by T cell receptors (TCR).

View Article and Find Full Text PDF

Severe heterogeneity within glioblastoma has spurred the notion that disrupting the interplay between multiple elements on immunosuppression is at the core of meaningful anti-tumor responses. T cell immunoreceptor with Ig and ITIM domains (TIGIT) and its glioblastoma-associated antigen, CD155, form a highly immunosuppressive axis in glioblastoma and other solid tumors, yet targeting of TIGIT, a functionally heterogeneous receptor on tumor-infiltrating immune cells, has largely been ineffective as monotherapy, suggesting that disruption of its inhibitory network might be necessary for measurable responses. It is within this context that we show that the usurpation of the TIGIT - CD155 axis via engineered synNotch-mediated activation of induced pluripotent stem cell-derived natural killer (NK) cells promotes transcription factor-mediated activation of a downstream signaling cascade that results in the controlled, localized blockade of CD73 to disrupt purinergic activity otherwise resulting in the production and accumulation of immunosuppressive extracellular adenosine.

View Article and Find Full Text PDF

Marie Skłodowska-Curie Symposia on Cancer Research and Care (MSCS-CRC) promote collaborations between cancer researchers and care providers in the United States, Canada and Central and Eastern European Countries (CEEC), to accelerate the development of new cancer therapies, advance early detection and prevention, increase cancer awareness, and improve cancer care and the quality of life of patients and their families. The third edition of MSCS-CRC, held at Roswell Park Comprehensive Cancer Center, Buffalo, NY, in September 2023, brought together 137 participants from 20 academic institutions in the US, Poland, Ukraine, Lithuania, Croatia and Hungary, together with 16 biotech and pharma entities. The key areas of collaborative opportunity identified during the meeting are a) creating of a database of available collaborative projects in the areas of early-phase clinical trials, preclinical development, and identification of early biomarkers; b) promoting awareness of cancer risks and efforts at cancer prevention; c) laboratory and clinical training; and d) sharing experience in cost-effective delivery of cancer care and improving the quality of life of cancer patients and their families.

View Article and Find Full Text PDF

Natural killer (NK) cell-based immunotherapy has benefitted from the multiple strengths that NK cells offer in adoptive transfer settings, not the least of which is their safety and potential for allogeneic use. Such use, however, necessitates the cryopreservation of NK cell-based therapy products to support logistical efforts in deploying these cells in different locations, decentralized from the point of collection or manufacturing. DMSO, the most commonly used cryoprotective agent (CPA), has been effective in protecting immune cells during freezing and thawing, but its ability to induce molecular and genetic changes to immune cells as well as its toxicity has stimulated interest in alternative CPAs.

View Article and Find Full Text PDF

TIGIT is a receptor on human natural killer (NK) cells. Here, we report that TIGIT does not spontaneously induce inhibition of NK cells in glioblastoma (GBM), but rather acts as a decoy-like receptor, by usurping binding partners and regulating expression of NK activating ligands and receptors. Our data show that in GBM patients, one of the underpinnings of unresponsiveness to TIGIT blockade is that by targeting TIGIT, NK cells do not lose an inhibitory signal, but gains the potential for new interactions with other, shared, TIGIT ligands.

View Article and Find Full Text PDF

The adaptation of natural killer (NK) cells to conditions in the microenvironment of tumors is deeply affected by their metabolic activity, itself a result of nutrient availability and the metabolism of the cancer cells themselves. Elevated rates of glycolysis and lipid metabolism in cancers not only lead to the accumulation of immunosuppressive byproducts but also contribute to an environment of elevated concentrations of extracellular metabolites. This results in altered NK cell bioenergetics through changes in transcriptional and translational profiles, ultimately affecting their pharmacology and impairing NK cell responses.

View Article and Find Full Text PDF

Treatment of many cancers, particularly those that remain difficult to treat or are refractive after standard-of-care therapies, has been challenging with cell-based therapies. Although relatively safe as allogeneic therapies and innately effective against cancers without the need for antigen sensitization, natural killer (NK) cells have necessitated use of genetic manipulation approaches to enhance their specificity, persistence, and homing. Chimeric antigen receptor (CAR) and gene-edited NK cell therapies have emerged as a potent treatment modality, addressing many of the issues that have plagued such gene-based therapies with other cell types.

View Article and Find Full Text PDF

Immunometabolic reprogramming due to adenosine produced by CD73 (encoded by the 5'-ectonucleotidase gene ) is a recognized immunosuppressive mechanism contributing to immune evasion in solid tumors. Adenosine is not only known to contribute to tumor progression, but it has specific roles in driving dysfunction of immune cells, including natural killer (NK) cells. Here, we engineered human NK cells to directly target the CD73-adenosine axis by blocking the enzymatic activity of CD73.

View Article and Find Full Text PDF

The production of adenosine by CD73 on cancer cells in the tumor microenvironment is a recognized immunosuppressive mechanism contributing to immune evasion in many solid tumors. While NK cells have been purported to overexpress CD73 under certain conditions, this phenomenon has remained elusive and unclear. We have found that while NK cells are able to upregulate expression of CD73 on their surface when exposed to CD73 cancer cells, this upregulation is not universal, nor is it often substantial.

View Article and Find Full Text PDF
Article Synopsis
  • Neutrophils play a crucial role in fighting pathogens, but their migration can also cause tissue damage.
  • Researchers used microRNA overexpression to identify protein-coding genes that influence neutrophil movement, finding that miR-99 reduces chemotaxis in both zebrafish and human neutrophil-like cells.
  • The study highlights that RORα, targeted by miR-99, is vital for neutrophil migration and immune defense, as inhibiting it made zebrafish more vulnerable to bacterial infections.
View Article and Find Full Text PDF

Over the past decade, lung cancer treatment has undergone a major paradigm shift. A greater understanding of lung cancer biology has led to the development of many effective targeted therapies as well as of immunotherapy. Immune checkpoint inhibitors (ICIs) have shown tremendous benefit in the treatment of non-small cell lung cancer (NSCLC) and are now being used as first-line therapies in metastatic disease, consolidation therapy following chemoradiation in unresectable locally advanced disease, and adjuvant therapy following surgical resection and chemotherapy in resectable disease.

View Article and Find Full Text PDF

Tumor antigen heterogeneity, a severely immunosuppressive tumor microenvironment (TME) and lymphopenia resulting in inadequate immune intratumoral trafficking, have rendered glioblastoma (GBM) highly resistant to therapy. To address these obstacles, here we describe a unique, sophisticated combinatorial platform for GBM: a cooperative multifunctional immunotherapy based on genetically engineered human natural killer (NK) cells bearing multiple antitumor functions including local tumor responsiveness that addresses key drivers of GBM resistance to therapy: antigen escape, immunometabolic reprogramming of immune responses, and poor immune cell homing. We engineered dual-specific chimeric antigen receptor (CAR) NK cells to bear a third functional moiety that is activated in the GBM TME and addresses immunometabolic suppression of NK cell function: a tumor-specific, locally released antibody fragment which can inhibit the activity of CD73 independently of CAR signaling and decrease the local concentration of adenosine.

View Article and Find Full Text PDF

Dimethylsufoxide (DMSO) being universally used as a cryoprotectant in clinical adoptive cell-therapy settings to treat hematological malignancies and solid tumors is a growing concern, largely due to its broad toxicities. Its use has been associated with significant clinical side effects-cardiovascular, neurological, gastrointestinal, and allergic-in patients receiving infusions of cell-therapy products. DMSO has also been associated with altered expression of natural killer (NK) and T-cell markers and their in vivo function, not to mention difficulties in scaling up DMSO-based cryoprotectants, which introduce manufacturing challenges for autologous and allogeneic cellular therapies, including chimeric antigen receptor (CAR)-T and CAR-NK cell therapies.

View Article and Find Full Text PDF

Background Aims: Traditionally, natural killer (NK) cells are sourced from the peripheral blood of donors-a laborious and highly donor-specific process. Processes for generating NK cells from induced pluripotent stem cells (iPSCs) have demonstrated that it is possible to successfully generate renewable alloreactive NK cells that are not only functional in vivo but can also be genetically engineered for enhanced function. However, poor standardization and cumbersome differentiation procedures suggest that further improvements in the control of the differentiation process are necessary.

View Article and Find Full Text PDF

Natural killer (NK) cell-based cell therapy has been emerging as a powerful weapon in the treatment of multiple malignancies. However, the inadequate infiltration of the therapeutic NK cells into solid tumors remains a big challenge to their clinical utility. Chemokine networks, which play essential roles in the migration of lymphocytes, have been recognized as critical in driving the intratumoral infiltration of NK cells via interactions between soluble chemokines and their receptors.

View Article and Find Full Text PDF

Among natural killer (NK) cell receptors, the T-cell immunoglobulin and mucin-containing domain (TIM-3) has been associated with both inhibitory and activating functions, depending on context and activation pathway. Ex vivo and in vitro, expression of TIM-3 is inducible and depends on activation stimulus. Here, we report that TIM-3 expression can be downregulated on NK cells under specific conditions.

View Article and Find Full Text PDF

Natural killer (NK) cells are powerful immune effectors, modulating their anti-tumor function through a balance activating and inhibitor ligands on their cell surface. Though still emerging, cancer immunotherapies utilizing NK cells are proving promising as a modality for the treatment of a number of solid tumors, including glioblastoma (GBM) and other gliomas, but are often limited due to complex immunosuppression associated with the GBM tumor microenvironment which includes overexpression of inhibitory receptors on GBM cells. CD155, or poliovirus receptor (PVR), has recently emerged as a pro-tumorigenic antigen, overexpressed on GBM and contributing to increased GBM migration and aggressiveness.

View Article and Find Full Text PDF

Background: The unique ability of NK cells to target cancer cells without antigen specificity makes them an attractive prospect for immunotherapy of solid tumors. However, the complexity of the tumor microenvironment (TME), particularly its heterogeneity and associated immunosuppressive properties, enables solid tumor cells to escape NK cell immune-surveillance by impairing their infiltration and cytotoxic functions. As a result, NK cells that have been able to infiltrate solid tumors are dysfunctional, exhausted and metabolically and functionally impaired.

View Article and Find Full Text PDF

The ability of natural killer (NK) cells to mediate potent antitumor immunity in clinical adoptive transfer settings relies, in large part, on their ability to retain cytotoxic function following cryopreservation. To avoid potential systemic toxicities associated with infusions of NK cells into patients in the presence of dimethylsulfoxide (DMSO), interest in alternative cryoprotective agents (CPAs) with improved safety profiles has grown. Despite the development of various sugars, amino acids, polyols, and polyampholytes as cryoprotectants, their ability to promote protection from intracellular cryodamage is limited because they mostly act outside of the cell.

View Article and Find Full Text PDF

Fluorescence nanoscopy has become an indispensable tool for studying organelle structures, protein dynamics, and interactions in biological sciences. Single-molecule localization microscopy can now routinely achieve 10-50 nm resolution through fluorescently labeled specimens in lateral optical sections. However, visualizing structures organized along the axial direction demands scanning and imaging each of the lateral imaging planes with fine intervals throughout the whole cell.

View Article and Find Full Text PDF

CD73, a cell-surface protein encoded by the gene , is overexpressed in glioblastoma (GBM), where it contributes to the tumor's pathophysiology via the generation of immunosuppressive adenosine. Adenosinergic signaling, in turn, drives immunosuppression of natural killer (NK) cells through metabolic and functional reprogramming. The correlation of CD73 with patient survival in relation to GBM pathology and the intratumoral infiltration of NK cells has not been comprehensively studied before.

View Article and Find Full Text PDF

NK cell infiltration into solid tumors is often low and is largely represented by the poorly-cytotoxic CD56 subset. Numerous studies have demonstrated that CD73, overexpressed under conditions of hypoxia, is involved in a variety of physiological processes, while its overexpression has been correlated with tumor invasiveness, metastasis and poorer patient survival in many cancers. Hypoxia itself favors aggressive glycolytic fueling of cancer cells, in turn driving reprogramming of NK cell metabolism.

View Article and Find Full Text PDF

Natural killer (NK) cells are attractive within adoptive transfer settings in cancer immunotherapy due to their potential for allogeneic use; their alloreactivity is enhanced under conditions of killer immunoglobulin-like receptor (KIR) mismatch with human leukocyte antigen (HLA) ligands on cancer cells. In addition to this, NK cells are platforms for genetic modification, and proliferate in vivo for a shorter time relative to T cells, limiting off-target activation. Current clinical studies have demonstrated the safety and efficacy of allogeneic NK cell adoptive transfer therapies as a means for treatment of hematologic malignancies and, to a lesser extent, solid tumors.

View Article and Find Full Text PDF

The ability to cryopreserve natural killer (NK) cells has a significant potential in modern cancer immunotherapy. Current cryopreservation protocols cause deterioration in NK cell viability and functionality. This work reports the preservation of human cytokine-activated NK cell viability and function following cryopreservation using a cocktail of biocompatible bioinspired cryoprotectants (i.

View Article and Find Full Text PDF