A series of amino-2-cyclohexyl ester derivatives were studied for their ion channel blocking and antiarrhythmic actions in the rat and a structure-activity analysis was conducted. The compounds are similar in chemical structure except for ionizable amine groups (pK values 6.1-8.
View Article and Find Full Text PDFCirc Arrhythm Electrophysiol
April 2013
Background: Loss-of-function mutations in Na(v)1.5 cause sodium channelopathies, including Brugada syndrome, dilated cardiomyopathy, and sick sinus syndrome; however, no effective therapy exists. MOG1 increases plasma membrane (PM) expression of Na(v)1.
View Article and Find Full Text PDFObjective: Mutations in the cardiac sodium channel gene SCN5A cause long QT syndrome (LQTS). We previously generated an LQTS mouse model (TG-NS) that overexpresses the LQTS mutation N1325S in SCN5A. The TG-NS mice manifested the clinical features of LQTS including spontaneous VT, syncope and sudden death.
View Article and Find Full Text PDFAtrial fibrillation (AF) is the most common form of sustained clinical arrhythmia. We previously mapped an AF locus to chromosome 5p13 in an AF family with sudden death in early childhood. Here we show that the specific AF gene underlying this linkage is NUP155, which encodes a member of the nucleoporins, the components of the nuclear pore complex (NPC).
View Article and Find Full Text PDFThe cardiac sodium channel Nav 1.5 is essential for the physiological function of the heart and contributes to lethal cardiac arrhythmias and sudden death when mutated. Here, we report that MOG1, a small protein that is highly conserved from yeast to humans, is a central component of the channel complex and modulates the physiological function of Nav 1.
View Article and Find Full Text PDFActivation of the nuclear factor (NF)-kappaB signaling pathway may be associated with the development of cardiac hypertrophy and its transition to heart failure (HF). The transgenic Myo-Tg mouse develops hypertrophy and HF as a result of overexpression of myotrophin in the heart associated with an elevated level of NF-kappaB activity. Using this mouse model and an NF-kappaB-targeted gene array, we first determined the components of NF-kappaB signaling cascade and the NF-kappaB-linked genes that are expressed during the progression to cardiac hypertrophy and HF.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2007
The Cardiac sodium channel gene SCN5A plays a critical role in cardiac electrophysiology and its mutations, either gain- or loss-of-functions, are associated with lethal arrhythmias. In this study, we investigated the effect of overexpression of SCN5A on the cardiac phenotype in a transgenic mouse model (TG-WT L10). Compared to NTG mice, heart rate, QRS duration, and QT intervals remained unchanged in TG-WT mice.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2007
Transgenic expression of SCN5A mutation N1325S creates a mouse model for type-3 long QT syndrome (LQT3), TG-NS/LQT3. Optical mapping is a high temporal and spatial resolution fluorescence mapping system that records 256 action potentials simultaneously in a Langendorff-perfused heart. Here for the first-time, we provide a spatial view of VT in a genetic LQT3 model using optical mapping.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2007
The N(1325)S mutation in the cardiac sodium channel gene SCN5A causes the type-3 long-QT syndrome but the arrhythmogenic trigger associated with N(1325)S has not been characterized. In this study, we investigated the triggers for cardiac events in the expanded N(1325)S family. Among 11 symptomatic patients with document triggers, six died suddenly during sleep or while sitting (bradycardia-induced trigger), three died suddenly, and two developed syncope due to stress and excitement (non-bradycardia-induced).
View Article and Find Full Text PDFTransgenic and gene-targeted mice are now frequently used to expand the study of cardiac physiology and pathophysiology owing to the ease with which the mouse genome can be manipulated. There are many measures by which an assessment of the phenotypical expression of the transgenic mouse can be made. In the case of cardiac channelopathies and how they relate to cardiac function, telemetry is a technology that utilizes transmitters that are surgically implanted in animals for the purpose of acquiring biopotentials or physiological parameters.
View Article and Find Full Text PDFObjective: Mutations in the cardiac sodium channel gene SCN5A are responsible for type-3 long QT disease (LQT3). The genesis of cardiac arrhythmias in LQT3 is multifaceted, and the aim of this study was to further explore mechanisms by which SCN5A mutations lead to arrhythmogenesis in vivo.
Methods: We engineered selective cardiac expression of a long QT syndrome (LQTS) mutation (N1325S) in human SCN5A and generated a transgenic mouse model, TGM(NS31).