Publications by authors named "Sandro F Tedde"

The favorable optoelectronic properties of metal halide perovskites have been used for X- and γ-ray detection, solar energy, and optoelectronics. Large electronic mobility, reduced recombination losses of the electron-hole pairs, and high sensitivity upon ionizing irradiation have fostered great attention on technological realizations. Nevertheless, the recognized mixed ionic-electronic transport properties of hybrid perovskites possess severe limitations as far as long-timescale instabilities and degradation issues are faced.

View Article and Find Full Text PDF

Rheumatoid arthritis is a chronic, systemic joint disease in which an autoimmune response translates into an inflammatory attack resulting in joint damage, disability and decreased quality of life. Despite recent introduction of therapeutic agents such as anti-TNFα, even the best current therapies fail to achieve disease remission in most arthritis patients. Therefore, research into the mechanisms governing the destructive inflammatory process in rheumatoid arthritis is of great importance and may reveal novel strategies for the therapeutic interventions.

View Article and Find Full Text PDF

Hybrid inorganic-in-organic semiconductors are an attractive class of materials for optoelectronic applications. Traditionally, the thicknesses of organic semiconductors are kept below 1 μm due to poor charge transport in such systems. However, recent work suggests that charge carriers in such organic semiconductors can be transported over centimeter length scales opposing this view.

View Article and Find Full Text PDF

The synthesis of an acceptor polymer PIDT-2TPD, comprising indacenodithiophene (IDT) as the electron-rich unit and an interconnected bithieno[3,4-]pyrrole-4,4',6,6'-tetrone (2TPD) as the electron-deficient unit, and its application for all-polymer photodetectors is reported. The optical, electrochemical, charge transport, and device properties of a blend of poly(3-hexylthiophene) and PIDT-2TPD are studied. The blend shows strong complementary absorption and balanced electron and hole mobility, which are desired properties for a photoactive layer.

View Article and Find Full Text PDF

A conjugated donor-acceptor polymer, poly[4,4,9,9-tetrakis(4-hexylphenyl)-4,9-dihydro- s-indaceno[1,2- b:5,6- b']dithiophene-2,7-diyl- alt-5-(2-ethylhexyl)-4 H-thieno[3,4- c]pyrrole-4,6(5 H)-dione-1,3-diyl] (PIDT-TPD), is blended with the fullerene derivative [6,6]phenyl-C61-butyric acid methyl ester (PCBM) for the fabrication of thin and solution-processed organic photodetectors (OPDs). Systematic screening of the concentration ratio of the blend and the molecular weight of the polymer is performed to optimize the active layer morphology and the OPD performance. The device comprising a medium molecular weight polymer (27.

View Article and Find Full Text PDF

A complementary cell analysis method has been developed to assess the dynamic interactions of tumor cells with resident tissue and immune cells using optical light scattering and impedance sensing to shed light on tumor cell behavior. The combination of electroanalytical and optical biosensing technologies integrated in a lab-on-a-chip allows for continuous, label-free, and noninvasive probing of dynamic cell-to-cell interactions between adherent and nonadherent cocultures, thus providing real-time insights into tumor cell responses under physiologically relevant conditions. While the study of adherent cocultures is important for the understanding and suppression of metastatic invasion, the analysis of tumor cell interactions with nonadherent immune cells plays a vital role in cancer immunotherapy research.

View Article and Find Full Text PDF

Organic semiconductors are attractive for optical sensing applications due to the effortless processing on large active area of several cm(2), which is difficult to achieve with solid-state devices. However, compared to silicon photodiodes, sensitivity and dynamic behavior remain a major challenge with organic sensors. Here, we show that charge trapping phenomena deteriorate the bandwidth of organic photodiodes (OPDs) to a few Hz at low-light levels.

View Article and Find Full Text PDF

Rapid and specific rare cell detection for point-of-care testing requires an integration of the sample preparation for flow cytometry. To achieve such a challenging goal we have developed a magnetic flow cytometry technique which applies magnetophoresis to perform cell enrichment, focusing, and background elimination in a single step. Time-of-flight measurements are performed with integrated magnetic sensors to detect specifically cancer cells and cell diameters in whole blood.

View Article and Find Full Text PDF

Nanotechnology provides the tools to develop novel biosensors with improved performance, including sensitivity and response time that can be readily integrated into diagnostic devices. We have developed a miniaturized cell analysis platform to advance microfluidic cell cultures by combining two complementary, label-free and non-invasive cell analysis methods for the long-term monitoring of dynamic cell behavior. The novel dual-parameter cell-on-a-chip detects light scattering from adherent cells to provide information on cell numbers and intracellular granularity, while simultaneously performing impedance spectroscopy to monitor cell adhesion and cell-cell interaction.

View Article and Find Full Text PDF

Solution-processed organic diodes based on bulk heterojunctions are attractive for large area photodetection. We report a general approach for fully spray-coated organic photodiodes with outstanding characteristics in comparison to bladed or spin-coated devices. Despite the high surface roughness and the less defined morphology of the spray-deposited organic layers, we observe organic photodetectors with responsivities of 0.

View Article and Find Full Text PDF