In this work we redefine the concept of biological importance and how to compute it, based on a model of complex networks and random walk. We call this new procedure, theoretical knock-out (KO). The proposed method generalizes the procedure presented in a recent study about Oral Tolerance.
View Article and Find Full Text PDFWe propose a working hypothesis supported by numerical simulations that brain networks evolve based on the principle of the maximization of their internal information flow capacity. We find that synchronous behavior and capacity of information flow of the evolved networks reproduce well the same behaviors observed in the brain dynamical networks of Caenorhabditis elegans and humans, networks of Hindmarsh-Rose neurons with graphs given by these brain networks. We make a strong case to verify our hypothesis by showing that the neural networks with the closest graph distance to the brain networks of Caenorhabditis elegans and humans are the Hindmarsh-Rose neural networks evolved with coupling strengths that maximize information flow capacity.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2003
We obtain exact analytical results for lattices of maps with couplings that decay with distance as r(-alpha). We analyze the effect of the coupling range on the system dynamics through the Lyapunov spectrum. For lattices whose elements are piecewise linear maps, we get an algebraic expression for the Lyapunov spectrum.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2002
Dynamical systems possessing symmetries have invariant manifolds. According to the transversal stability properties of this invariant manifold, nearby trajectories may spend long stretches of time in its vicinity before being repelled from it as a chaotic burst, after which the trajectories return to their original laminar behavior. The onset of chaotic bursting is determined by the loss of transversal stability of low-period periodic orbits embedded in the invariant manifold, in such a way that the shadowability of chaotic orbits is broken due to unstable dimension variability, characterized by finite-time Lyapunov exponents fluctuating about zero.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2002
We study the synchronization properties of a lattice of chaotic piecewise linear maps. The coupling strength decreases with the lattice distance in a power-law fashion. We obtain the Lyapunov spectrum of the coupled map lattice and investigate the relation between spatiotemporal chaos and synchronization of amplitudes and phases, using suitable numerical diagnostics.
View Article and Find Full Text PDF