Publications by authors named "Sandro Conrad"

Charged particles are increasingly used in cancer radiotherapy and contribute significantly to the natural radiation risk. The difference in the biological effects of high-energy charged particles compared with X-rays or γ-rays is determined largely by the spatial distribution of their energy deposition events. Part of the energy is deposited in a densely ionizing manner in the inner part of the track, with the remainder spread out more sparsely over the outer track region.

View Article and Find Full Text PDF

DNA double-strand breaks (DSBs) are repaired by nonhomologous end joining (NHEJ) or homologous recombination (HR). The C terminal binding protein-interacting protein (CtIP) is phosphorylated in G2 by cyclin-dependent kinases to initiate resection and promote HR. CtIP also exerts functions during NHEJ, although the mechanism phosphorylating CtIP in G1 is unknown.

View Article and Find Full Text PDF

Although DNA non-homologous end-joining repairs most DNA double-strand breaks (DSBs) in G2 phase, late repairing DSBs undergo resection and repair by homologous recombination (HR). Based on parallels to the situation in G1 cells, previous work has suggested that DSBs that undergo repair by HR predominantly localize to regions of heterochromatin (HC). By using H3K9me3 and H4K20me3 to identify HC regions, we substantiate and extend previous evidence, suggesting that HC-DSBs undergo repair by HR.

View Article and Find Full Text PDF

DNA double-strand breaks (DSBs) can induce chromosomal aberrations and carcinogenesis and their correct repair is crucial for genetic stability. The cellular response to DSBs depends on damage signaling including the phosphorylation of the histone H2AX (γH2AX). However, a lack of γH2AX formation in heterochromatin (HC) is generally observed after DNA damage induction.

View Article and Find Full Text PDF

DNA non-homologous end joining (NHEJ) and homologous recombination (HR) function to repair DNA double-strand breaks (DSBs) in G2 phase with HR preferentially repairing heterochromatin-associated DSBs (HC-DSBs). Here, we examine the regulation of repair pathway usage at two-ended DSBs in G2. We identify the speed of DSB repair as a major component influencing repair pathway usage showing that DNA damage and chromatin complexity are factors influencing DSB repair rate and pathway choice.

View Article and Find Full Text PDF

DNA double-strand breaks (DSBs) are arguably the most important lesions induced by ionizing radiation (IR) since unrepaired or mis-repaired DSBs can lead to chromosomal aberrations and cell death. The two major pathways to repair IR-induced DSBs are non-homologous end-joining (NHEJ) and homologous recombination (HR). Perhaps surprisingly, NHEJ represents the predominant pathway in the G1 and G2 phases of the cell cycle, but HR also contributes and repairs a subset of IR-induced DSBs in G2.

View Article and Find Full Text PDF
Article Synopsis
  • Ionizing radiation causes DNA double-strand breaks (DSBs), but it's still unclear how efficiently these breaks are repaired at low versus high doses.
  • Research indicates that primary human fibroblasts show significantly hindered DSB repair after low doses (10 mGy and below) compared to higher doses, with cells unable to lose gamma-H2AX foci after 2.5 mGy.
  • Interestingly, treating cells with hydrogen peroxide (H2O2) allows for effective removal of gamma-H2AX foci from 10 mGy, suggesting that low radiation levels might need a specific cellular response to repair DSBs.
  • In mouse studies, while higher doses (100 mGy or 1 Gy) promote efficient foci removal
View Article and Find Full Text PDF

Homologous recombination (HR) and non-homologous end joining (NHEJ) represent distinct pathways for repairing DNA double-strand breaks (DSBs). Previous work implicated Artemis and ATM in an NHEJ-dependent process, which repairs a defined subset of radiation-induced DSBs in G1-phase. Here, we show that in G2, as in G1, NHEJ represents the major DSB-repair pathway whereas HR is only essential for repair of approximately 15% of X- or gamma-ray-induced DSBs.

View Article and Find Full Text PDF

Macrophages are potent elicitors of inflammatory reactions that can play both positive and negative roles in radiotherapy. While several studies have investigated the effects of X-rays or gamma-rays on macrophages, virtually no work has been done on the responses of these cells to irradiation with carbon ions. Investigations into the effects of carbon ion irradiation are of particular interest in light of the fact that this type of radiation is being used increasingly for cancer therapy.

View Article and Find Full Text PDF