A novel synthetic procedure for the functionalisation of styrenic cross-linked polymers with perfluorinated acyl chains has been reported. The effective significant grafting of the fluorinated moieties is supported by {H}-C and {F}-C NMR characterisations. This kind of polymer appears promising as catalytic support for a variety of reactions requiring a highly lipophilic catalyst.
View Article and Find Full Text PDFThe conjugation of the cationic antimicrobial peptide, apidaecin Ib, to the anionic photosensitizer, 5(4'-carboxyphenyl)-10,15,20-triphenylporphyrin (cTPP), afforded a new antibacterial agent effective, under light activation, against both Gram-positive and Gram-negative bacteria. At low concentrations (1.5-15 μM) the conjugate was able to reduce the survival of Escherichia coli cells by 3-4 log10, and most notably, it resulted photoactive also against hard-to-treat Pseudomonas aeruginosa, although at higher concentration (60 μM).
View Article and Find Full Text PDFHydrogen peroxide (H(2)O(2)) synthesis directly from dioxygen and dihydrogen was carried out using a continuous flow reactor with a Pd catalyst. The effects of ionic liquids on the selectivity to H(2)O(2) were studied on a Pd/SiO(2) catalyst. It was found that the ionic liquid [BMIM][BF(4)] in water or ethanol is quite beneficial to the selectivity to H(2)O(2).
View Article and Find Full Text PDFFluorinated organo-silica gels doped with tetra-n-propylammonium perruthenate (TPAP) are excellent catalysts for the aerobic oxidative dehydrogenation of alcohols in supercritical CO2 (scCO2). Their activity and stability are subtly dictated by structure, depending on the degree of fluorination and on the length of the fluoroalkyl chain linked to the silica network. Such dependence reflects the hydrophilic-hydrophobic balance (HHB) of the matrix, as evaluated by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy.
View Article and Find Full Text PDFA fulleropyrrolidine bearing a nitroxide free radical has been inserted into single-walled carbon nanotubes with the aid of supercritical CO2. Thanks to the encapsulated paramagnetic probes, it has been possible to detect and characterize the resulting peapod-like structure through electron paramagnetic resonance (EPR) spectroscopy. In particular, the analysis of spectral parameters derived from extensive EPR studies has elucidated the orientation and the residual rotational dynamics of the molecules embedded in the nanotubes.
View Article and Find Full Text PDFFluoRuGel--a hybrid fluorinated silica glass doped with TPAP (tetra-n-propylammonium perruthenate)--is a versatile catalyst for the aerobic oxidation of different alcohols in dense phase CO(2) with marked stabilization and activity enhancement of perruthenate upon its confinement in the sol-gel fluorinated silica matrix. A brief competitive analysis shows large potential rewards.
View Article and Find Full Text PDFThe replacement of toxic Cr(VI) for O2 and of chlorinated solvents for supercritical carbon dioxide (or ionic liquids) in the oxidation of alcohols remains hindered by the low selectivity and activity of the current heterogeneous catalysts. Using an integrated approach that combines sol-gel entrapped perruthenate as aerobic catalyst, an encapsulated ionic liquid as solubility promoter, and scCO2 as the reaction solvent, we have developed a system capable of rapidly converting different alcohols into carbonyl compounds with complete selectivity, including substrates which are otherwise difficult to oxidise. The methodology is generally applicable and may easily be extended to other waste-free, catalytic syntheses of fine chemicals.
View Article and Find Full Text PDFIn a previous study we examined by the exciton-coupled circular dichroic method the distance effect generated by three-rigid-turn and helical-peptide spacers. In this connection porphyrins were confirmed to be excellent reporter chromophores. In the present investigation we have completed this research by expanding the original analysis to the assessment of the combined role of the chromophore distance and orientation with use of the same porphyrin derivatives and additional four analogous spacers of different main-chain lengths.
View Article and Find Full Text PDFTwenty years after their invention, sol-gel organically modified silicates (ORMOSIL) are finding a number of impressive applications that range from efficient deliver of genes into mouse brains to self-ordered helices of interest to fields as diverse as optics, catalysis, molecular recognition, and chromatography. The physical bases of this mulifaceted chemistry, therefore, are of immense importance to scientists working toward new applications such as photovoltaics and catalysis that are crucially important in making sustainable global development. The purpose of this article is to provide a general picture of ORMOSIL's physical chemistry that will be useful in the creative development of new materials capable to solve a number of relevant open problems.
View Article and Find Full Text PDFRanging from the oxidative conversion of water to O(2) to the elegant hydroxylation of olefins and to oxidative dehydrogenation of alcohols Ru-mediated oxidations are finding increasing application due to the unique properties of this extremely versatile transition metal, whose oxidation state can vary from -II to +VIII. Covering recent developments in both homogeneously and heterogeneously catalysed oxidations (in liquid-phase as well as in novel reaction media), this tutorial review aims to provide investigators with a general picture of the chemical and structural origins of the excellent performance of many ruthenium catalysts and to promote further advancement that, it is envisaged, will soon benefit society at large.
View Article and Find Full Text PDFWhy do sol-gel catalysts often show superior performance in terms of selectivity, stability and reactivity? This work is an attempt to provide a rationale which could be used as a predictive tool in the development of novel catalysts for chemical conversions that will be crucial to achieve a more sustainable development.
View Article and Find Full Text PDFPorphyrins are promising chromophores for the investigation of the still unexplored area of 3-dimensional structural studies of proteins by using the exciton coupled circular dichroism (CD) method. The synthesis, conformational characterization by FTIR absorption and (1)H-NMR, and CD properties are described for a model bis-porphyrin system based on homooligo-[L-(alphaMe)Val](n) peptides as rigid spacers. In particular, the coupled CD phenomenon is experimentally detected, the intensity of which is modulated by the interchromophoric distance.
View Article and Find Full Text PDFMost hydrogen peroxide is currently produced by the selective hydrogenation of 2-ethylanthraquinone (EAQ) to 2-ethylanthrahydroquinone (EAHQ), followed by treatment with dioxygen; this produces hydrogen peroxide and regenerates 2-ethylanthraquinone. We have developed novel catalysts for this process that are based on palladium supported on very lipophilic functional resins and that are able to promote a chemoselectivity for EAHQ slightly but definitely superior to that provided by an industrial catalyst under identical conditions. This finding demonstrates the potential of variations of the lipophilic/hydrophilic character of the support as a tool for the improvement of the chemoselectivity of resin-based metal catalysts.
View Article and Find Full Text PDF